

CACRC Depot Bonded Repair Investigation – Round Robin Testing

John Tomblin, PhD Executive Director, NIAR

Lamia Salah Sr. Research Engineer, NIAR

July 22nd, 2009

FAA Sponsored Project Information

- Ø Principal Investigators & Researchers
 - Ø Dr. John Tomblin, Wichita State University
 - Ø Lamia Salah, Wichita State University
 - Ø Mike Borgman, Spirit Aerosystems
- Ø FAA Technical Monitor
 - Ø Curtis Davies, Lin Pham
- Ø Other FAA Personnel InvolvedØ Larry Ilcewicz, Peter Shyprykevich
- Ø Industry Participation
 - Ø Mike Borgman, Spirit Aerosystems

- Ø To investigate different variables on the performance of bonded repairs applied to sandwich structures
- Ø To investigate the effectiveness of bonded OEM vs field repairs implemented at various OEM/ Operator depots
- Ø To evaluate the static, fatigue and residual strength performance of OEM vs field repairs
- Ø To evaluate the existing CACRC standards for composite repair implementation and technician training

Reference SAE ARP5089

Wichita State University

Ø Objective

Previous Research

OEM Prepreg Repair Method

- Ø Repair material:
- Ø T300/934 3K-70-PW prepreg with FM 377S adhesive
- Ø 0.25" overlap
- Ø No extra ply
- Ø 350°F cure

- Ø Picture Frame shear elements were sent to 4 different airline depots for repair
- Ø All depots were provided shear elements to repair using the OEM and the CACRC repair procedure
- Ø All shear elements were mechanically tested to failure

Wichita State University

July 22nd, 2009

Previous Research-Repair after Contaminant Exposure

JMS

- Ø Even after fully drying the repair joint, the original repair joint capability may not be restored
- Ø WA-0 specimens are specimens that were conditioned at 145°F 85%RH until moisture equilibrium then dried back to 0% moisture

Ø WA-75 specimens are specimens that were conditioned at 145°F 85%RH until moisture equilibrium then dried back to 75% saturation

Ultimate Strength of WA-75 specimens tested at RTA

Adhesively Bonded Repairs are Process Dependent

- Repair Technician Training: technician training directly affects the quality (structural Ø integrity of a bonded repair). Only properly/ recently trained technicians should perform bonded repairs
- Cure Cycle Deviation: an improper cure cycle will yield a deficient repair Ø
- Contaminated Repair Surface: pre-bond moisture, contaminated repair surface will yield a Ø substandard bonded repair

Bonded Repair Quality Assurance

Proposed Research – Sandwich Coupon Configuration

- Ø Large beams, 12" x 48" with the repair tested in compression
- Ø 3-ply facesheets, 1/8" core cell size, 2" thick

- Ø Parent Material: T300/ 934 with FM 377S adhesive
- Ø Repair Materials: OEM repair using parent system (350°F cure) Field repair 1 using Hexcel M20 PW (250°F cure) - Prepreg Field repair 2 using Epocast 52A/B - Wet lay-up

- Ø A 2.5" hole diameter will be used to simulate damage on all coupons
- Ø Detailed test matrix is outlined in figure 1 below
- Ø Airline depots: Northwest/ Delta, United (4 Depots)

Repair Station	Coupon Configuration	Repair Type	Number of test Replicates Loading Mode		
			Compression	Compression	Compression RS
			Static RTA	Static ETW	ETW
OEM	Pristine/ Undamaged	N/A	6	6	6
OEM	2.5" hole	None		3	3
OEM	2.5" hole	2D-OEM		3	3
Field Station 1	2.5" hole	2D-R1		3	3
Field Station 1	2.5" hole	2D-R2		3	3
Field Station 2	2.5" hole	2D-R1		3	3
Field Station 2	2.5" hole	2D-R2		3	3
Field Station 3	2.5" hole	2D-R1		3	3
Field Station 3	2.5" hole	2D-R2		3	3
Field Station 4	2.5" hole	2D-R1		3	3
Field Station 4	2.5" hole	2D-R2		3	3
Total			6	36	36

Figure 1 : CACRC Round Robin Test Matrix

Wichita State University

- Ø NIAR will provide detailed Repair procedures to be reviewed by OEM (Airbus and Boeing)
- Ø Approved repair procedures will be supplied along with coupons to OEM/ field stations

{