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ABSTRACT 

Network-on-Chip (NoC) architectures have emerged as a promising technology for modern 

computer systems to address the design challenges of high-performance computing systems. 

Wireless NoC (WNoC) architectures are introduced to improve performance by reducing the core-

to-core communication latency. Conventional WNoCs broadcast messages that increase 
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CHAPTER 1 

INTRODUCTION 

Computing is a critical task of modern technology, where it uses computers to manage and 

process the information. The revolution of computation led to the developments and improvements 

in designing low-cost microprocessors. According to Moore’s law the number of transistors on the 

chip doubles about every two years. Till recent times we have been able to push more and more 

transistors on a single chip, but one day we will reach a limit that a transistor may be one atom 

length, this will be an absolute limit on the Moore’s law [1], [2]. 
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transistors. The performance of a single-core architecture can be enhanced if the core accesses the 

data quickly and it can be achieved with the introduction of a dedicated cache. The cache memory 

stores the frequent data and so the latency can be reduced if it is not accessing the main memory. 

However, the size of cache memory is small, and so the latency is a major issue in single-core 

architectures. So, for complex computations or multitask environments, single-core architectures 

are not satisfactory. Mostly, the processors manufactured before 2005 are single-core and they are 

cheap now with the evolution of multicore architectures. Figure 1.1 illustrates a simple single-core 

CPU architecture, which has an arithmetic logic unit (ALU) and is possible to execute only a single 

instruction at a time.  

 

Figure 1.1: Single-core architecture 

As time goes on, the modern requirements are not satisfied with the existed single-core 

architectures as they have certain limitations in multitasking. Single-core based modeling and 

simulation techniques are not adequate to design modern multicore embedded systems [28]. 

Multicore processors are emerged to deal with the multiple tasks/applications given to the 

processor at any given instant of time. Multicore system has multiple cores that can be on a single 

or multiple system. Po8 0 Td
[(a)- (o)2 (s)1.1 (s)0.9D.istede 
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According to multicore architecture design techniques, four cores running at one fourth of 

the frequency can approach the performance of a single-core running at full frequency, while the 

quad-core power consumption is less. If the cores are increased, it would be an advantage for 

software applications as they have more threads. The multicore architectures are capable to handle 

multithreaded parallel processing. Multiple threads on multiple cores can be executed 

simultaneously at the same processor cycle [29], [30].  

Multicore systems are designed in a way that two or more cores are coupled together to 

work concurrently in parallel for increasing execution speed of complex jobs which need multiple 

operations to be done at a single instant of time. In multicore architectures, speed can be enhanced 

if the cores access the data quickly and it can accomplish when all the cores have their own 

dedicated cache. To reduce the latency between the cores, cache levels can be expanded further. 

However, the performance of multicore also relies on the type of cache utilized such as dedicated 

and sharing. With the introduction of cache in multicore architectures, cache coherence is a major 

issue when the cached data from cores is not updated in the shared memory. Figure 1.3 illustrates 

the multicore architectures organization with dedicated cache and shared cache [31].

 

(a) 
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Figure 1.3 (a) illustrates the AMD Opteron organization, where CL1 is divided into L1 data 

cache and L1 instruction cache with dedicated CL2 for each core. Figure 1.3 (b) illustrates the Intel 

Core Duo organization that has a dedicated CL1 for instruction and data with a shared CL2 cache. 

In all the multicore architectures, the main memory is shared and so the cache coherence problems 

arise if the cached data of the cores are not updated. Multicore architectures are reliable with 

improved performance for network-on-chip (NoC) architectures. Even though multicore 

processors have become important, there are still many issues that designers face while designing 

more than one processing core on a chip. For efficient on-chip communication, there are certain 

constraints to be considered, such as limited area, communication latency, and power 

consumption. To combat unnecessary power consumption, many designs incorporate a power 

control unit which has the authority to shut down unused cores and limits the consumption of 

power [32]. The bus based multicore architecture [33] is suitable for small number of cores (say, 

4-8) with dedicated wires to the cores. However, the manufacturing of chips using dedicated wires 

would consume more power but offers no or little performance improvement. The inefficiency of 

dedicated wires resulted in a shift to on-chip networks and incorporating wireless communication 

among cores. NoC provides a more scalable solution for the multicore architectures.  

The scaling difficulties of uniprocessor architectures lead to the evolution of chip 

multiprocessors (CMPs). To increase the number of cores in a scalable way, the research and 

evaluation on NoC architectures predominantly increased. The memory hierarchy, interconnect, 

wiring schemes, routing architecture, network topologies, and power optimization techniques play 

a key role in the performance of CMP designs as well as NoC architectures. The advanced 

multicore chip supports several cores say, 10 to 100 or more on a chip and their performance is 
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1.2 Cache Coherence in Multicore Architectures 

Single-core architectures are having limitations to speed up by increasing clock frequency 

as they dissipate enormous heat and consume more power. Then the existence of multicore 

architectures raised as they are good to distribute work among cores and they can work 

concurrently to complete the given task successfully. To cut down the costs of multicore 

architectures, shared memory is introduced. In multicore architecture, cores in a group work 

together in parallel according to the given assignments and there is a need of data exchange 

between cores in this process. Due to the 



 

4 
 

Figure 1.4 illustrates the cache organization of a two-core CPU. Here, each core h14 (r)]TJ
0 T td 
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whichever read the new value of X after the update of processor P0, a new mechanism is required 

to update the main memory location value as well as all other processors who will be using it. 

 

Figure 1.5: Cache coherence example 
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In traditional mesh architecture, communication latency, power consumption, and hop 

count are high due to its architecture design and routing protocol. Mesh architecture is completely 

wired interconnects and thus having scaling issues. Traditional mesh architectures make use of 

entire architecture for any application and so they may face underutilization challenges for small 

applications.  

In traditional WNoC, even though wireless routers and clusters division is implemented to 

address the issues of traditional mesh architecture, it still has the problems with incoherent data, 

broadcasting, and traffic issues which also increases power consumption. So, a novel architecture 

is required to reduce wired interconnects, communication latency, cache coherence, data 

synchronization, and power consumption.  

However, as the number of cores increase, the complexity of controlling the architecture 

in terms of latency, wired/wireless links are always challenging. Instead of using the entire network 

for a single application, the subnets partition helps to reduce latency and power consumption. The 

partition of cores into the subnets improve the system performance and they can be categorized 

into uniform and non-uniform partition. Uniform partition leads to underutilization of cores and 

more power consumption for smaller applications. Logical partition of subnets to find a center core 

is always challenging as the number of cores increase mostly if the size of architecture is of even 

size. 

1.5 Contributions 

In this work  ]TJ
-0.004 Tc 0.004 TM4 (s)aj9 (l)- ( co)-4(e.)]TJ
0 Tc 02Tw
0 Tc  Td
( ]TJ
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• Introduction of distributed directories to overcome centralized directory issues such 

as network scalability and performance. 

• Introduction of non-uniform partitioning in WNoC to improve core utilization and 

performance. 

• Other contributions include: Introduction of a simulation platform and introduced 

workload characterization for multicore WNoC simulation. 

1.6 Dissertation Organization 

The dissertation is organized as follows: 

In Chapter 2, literature survey on 
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CHAPTER 2 

LITERATURE SURVEY 

In this chapter, we discuss some related published articles as background work and 

motivation. We start with cache memory hierarchy in single-core and multicore architectures. 

Then we discuss how DASH architecture addresses cache coherence, and how popular 

interconnection network topologies such as bus, crossbar and mesh topologies are used. Finally, 

we discuss WNoC topology and clustering of WNoC cores into uniform and non-uniform subnets.  

2.1 Cache Memory Hierarchy 

Cache is a hardware that is used to store data close to the CPU to improve performance. 

Normally, each core has its own cache memory. Single-core architectures can improve 

performance with increased clock frequency but consumes more power which is nearly 73% with 

20% increase of clock frequency. However, with the introduction of a second core, without 

increasing the frequency, the performance can be improved to 73% with minimal rise of power 

consumption compared to single-core [45]. Then the designers developed multicore architectures 

and introduced parallel processing methods such as thread level parallelism (TLP). Multicore 

supports TLP to boost up performance.  

2.1.1 Cache in Single-Core Architectures 

To improve the performance of a processor, cache is introduced between the main memory 

and the CPU. During
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introduced to reduce cache miss. CL2 can be shared or dedicated based on the type of architecture. 

In this research, shared off-chip CL2 is considered. The cache levels are further increased to 

improve the performance, but they are always shared to cut down the costs. The latency is 

minimum if CL1 has requested data, but it increases if there is a miss in CL1 and its ascending 

from there on to main memory. Figure 2.1 illustrates the Celeron processor [46] with 2x16 KB L1 

cache and 128 KB L2 on-chip cache levels in single-core architecture. The on-chip CL2 increases 

the cost of the system.   

 
(a) 

 
(b) 

Figure 2.1: Examples of cache organization in single-core architectures: (a) Single-core Celeron processor with 

private CL1 and on-chip CL2 (b) Single-core Pentium II Xeon processor with private CL1 and off-chip CL2 

In some processors, CL2 is off-chip and is close to main memory. Figure 2.2 illustrates the 

Pentium II Xeon processor [46] with 2x16 KB L1 cache and 512 KB to 2 MB L2 off-chip cache 

levels in single-core architecture.   
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2.1.2 Cache in Multicore Architectures 

The multicore architecture is a single physical chip that has more than one core. As cores 

increase, multiple requests to main memory leads to traffic, and latency. So private CL1 is 

accommodated for each core and thus individual data requests to main memory can be reduced. 

To incur the costs and improve performance, shared 
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 The communication latency to fetch data from cores depends on the level of cache where 

the data is available. To wind up, the latency and power consumption is maximum when the cores 

try to fetch data from main memory. To reduce the latency and power consumption, suitable 

coherence protocols between main memory and cores must be established.  

2.1.3 Cache Coherence Protocols in Multicore Architectures 

The main reason of using cache is to reduce the execution time of CPUs. If the data is 

referenced in cache, then it completes the execution in less CPU cycles rather than consuming 

more cycles when re
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bandwidth, power, and increase latency for non-shared data compared to shared data. These 

broadcasting techniques shows that on average, 67% of broadcasts are unnecessary [51]. 

Traditional pure write update (PWU) protocol has low network latency but high bandwidth 
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In MESI protocol, for a read miss, the cache block is moved to either shared or exclusive 

based on the cache status that is shared or not. If the cache is shared, then the cache will be in 

shared state, else in exclusive that indicates the data is consistent with main memory. The 

advantage of MESI protocol is the capability of avoiding bus invalidation. MESI simply skips bus 

transaction to write to cache instead they move to modified state. 

Directory-based cache coherence protocols are better for large core architectures and 

address the issues of snoopy protocols [54]. Figure 2.4 illustrates the block diagram of directory-

based cache coherence protocol. From the Figure 2.4, multiple sharer groups are connected to a 

shared directory along with L2 cache. Each group individually has different number of processors 

less than 32 in number and follows a snoopy protocol. Here, the directory receives the requests 

from each core individually from a sharer group to reduce the network bandwidth. The directory 

maintains the processor information/data and thus it reduces the latency.    

Figure 2.4: Block diagram of directory-
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The performance improvement by reducing cache coherence in multicore architectures can 
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cores and provides scalability of cores as it does not have any single control unit. DASH protocol 

does not rely on broadcast messages and instead uses point-to-point messages sent between 

processors and memories to keep caches consistent [58]. 
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2.3 Interconnection Network Topologies 

In this subsection, we discuss some popular network topologies such as bus, crossbar and 

mesh. In parallel architectures, network topologies refer to the type of interconnections
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terminators wouldn’t be expensive, and the network doesn’t require any additional hubs or 

switches to establish communication between nodes. 

 

Figure 2.6: Bus network topology 

In bus topology, if single node is down, then it wouldn’t affect the entire network. 

However, if the bus or main cable fails then it affects the entire network. Additional devices can 

be easily connected to the network.  But the performance can be degraded with increased nodes, 

data size, and not suitable for heavy traffic [61]. The central cable length has a limit and thus the 

number of nodes connected to cable, which brings the issues of scalability. In case of time-shared 

common bus, only a single communication between two processors or access of main memory is 

possible with a limited transfer rate. Also, the troubleshooting is difficult to manage in large 

networks.   

2.3.2 Crossbar Topology 

In crossbar topology, the switches are arranged in a matrix configuration that has multiple 

input and output lines as illustrated in Figure 2.7. Crossbar switch topology is a low latency and 

high throughput network [62]. In crossbar topology, every node is connected to other node with 

non-blocking feature. The arrangement of cores in crossbar topology is in rows and columns 
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pattern. The crossbar topology achieves high performance as the switches provide all possible 

permutations [63]. 

 

Figure 2.7: Crossbar topology 

In cross topology, every node can reach other node through the corresponding switch by 

following a XY routing algorithm. The number of horizontal and vertical links are interconnected 

by a switch and the communication between nodes is through these intersections. In crossbar, to 

select a node the topology has unique intersection. There is no alternative path if any node in row 

or column fails.  

As illustrated in Figure 2.7, the crossbar network uses p*m grid matrix to connect p inputs 

to m outputs in a non-blocking manner. The crossbar topology provides higher bandwidth with 

reduced hop count. Crossbar supports simultaneous transfers from all memory modules and 

possibility of considering alternative switching route. However, the crossbar topologies have 

drawbacks such as failure of any cross-point prevents the 
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engaged in every communication. Crossbar topologies are expensive as they require many wires 

and lack of scalability, because the crossbar needs N2 switches for N nodes.   

2.3.3 Mesh Topology 

Mesh topology is simple, and it can reach destination through several paths. Mesh is easy 

to layout on-chip with equal length of links. Mesh is a potential network topology for multicore 

architectures [64]. In a two-dimensional (2D) mesh network, all cores are connected in a crossbar 

connection as illustrated in Figure 2.8. The cores are plotted/organized in rows and columns 

method and they are addressed using matrix technique. Mesh network topology is the most 

common topology used, due to its advantages of shorter wavelength, low router complexity, and 

feasibility.  

 

Figure 2.8: 2D Mesh topology  

Wired mesh network provides very good reliability for inter-core communication [65]. In 

realistic implementations, 2D meshes with equal number of nodes along each dimension are used 

for connecting a set of processing nodes. The mesh topology with XY routing algorithm has several 

advantages such as never runs into deadlock or live lock.  
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Figure 2.9: Mesh topology with subnet division 

 
Instead of using the entire network for smaller workloads, the cores are divided into clusters 

which gives the scope of assigning multiple tasks that uses a single cluster or multiple clusters 

according to the given workload. This virtual clustering allows the network to be active or non-

active cluster according to the given task. This will help in reducing the power consumption as 

idle network consumes less power compared to active cluster. The subnet division will make an 

individual small network and it could reach the destination faster if the destination is in the same 

subnet.  

Even though, the cores are clustered into subnets, at some point they need to follow 

traditional mesh topology that has multiple path policy to reach the destination. This method 

increases latency and power consumption. To address such issues, alternative routing with the 

wireless routers is introduced. 
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2.4.2 Wireless Routers into Subnets 

To enhance the performance or to reduce latency of traditional mesh clustering, wireless 

routers are introduced [68], [69]. These routers avoid traditional routing and follows subnet to 
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The routers in NePA architecture has two bidirectional 64-bit links connecting it with the 

neighboring routers and additionally they also have vertical ports. With the help of the links, two 

subnets can be formed – an East subnet and a West subnet, separating the whole network into two 

sub-networks. The input and output ports of a NePA router is illustrated in Figure 2.11. 

 

Figure 2.11: Port description of NePA router 

Whenever a packet is to be transmitted it is injected into the router via internal port (Int) 

and accordingly it is directed to destination by directing it towards either East-subnet or West-

subnet. NePA utilizes an adaptive XY routing [71] scheme to route the packet from source to 

destination. To balance the link utilization and improve network performance, the router selects an 

alternative output port for incoming packets. This process is useful, especially when the output 

port is congested. Wireless routers are capable of transferring packets via wired as well as wireless. 

Some of the wired routers in WNoC are replaced with wireless routers which have wireless 

links to other routers in different subnets, in addition to the original wired links. Figure 2.12 

illustrates the traditional WNoC architecture, where the cores are divided into four rectangular 

subnets and the wireless routers are placed in the central core of each subnet.  
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cores. The whole network is divided into subnets and each node is identified within its subnet using 

a local address. The features of addressing a specific core in a network help WNoC provide much 

faster routing decisions as well as a scalable hierarchical system. 
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this technique, a subnet can run its own application alone and can serve the requests of other 

subnets with a 
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congestion is too high, then the nodes check for an alternative route that has less congestion path. 

Each node has horizontal path with 2-bits quantized value and vertical path with 2-bits quantized 

value, which totally makes 4-bits load value to find the less congestion path. Horizontal path node 

uses 2-bits quantized value that reflects East subnet and West subnet to calculate the less 

congestion path. Similarly, vertical path node uses 2-bits quantized value that reflects North subnet 

and South subnet to calculate the less congestion path.  

To establish a route between source node and destination node, configuration packets are 

generated with the collaboration of neighbor nodes. Adaptive algorithms may need more 

computation than deterministic algorithms to identify the correct path for sending packets between 

nodes [78], [79], [80]. The performance can be improved when the load is uniformly distributed 

throughout the network and maintains balanced nature of the architecture.  
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CHAPTER 3 

PROPOSED DIRECTORY-BASED WIRED-WIRELESS NETWORK-ON-CHIP 

ARCHITECTURES 

In this chapter, we introduce our proposed directory-based wired-wireless network-on-chip 

architectures. We describe the design considerations and working principle of the directories. We 

propose three architectures as listed below: 

• Proposed Architecture 1: Introduction of Centralized Directory in WNoC  

     Architecture with Uniform Partition of Subnets 

• Proposed Architecture 2: Introduction of Distributed Directories in WNoC  

     Architecture with Uniform Partition of Subnets 

• Proposed Architecture 3: Non-Uniform Partition of Subnets in WNoC Architecture   

      with Distributed Directories 

The proposed architecture is a hybrid combination of the WNoC architecture and the 

DASH architecture. The major goal of the proposed multicore architecture is to reduce the 

communication latency among the cores by decreasing the number of hops required to travel from 

a source node to a destination node using the directory and wireless routers. The key design 

considerations include: grouping cores, designing directory, managing cache consistency, and 

communication among cores. 

Primarily, in this work, we introduce a single directory that is centralized directory for 4 

subnets, where each subnet has 9-core that makes a total of 36-core architecture. Thus, we design 

a novel architecture, that is wireless network-on-chip architecture with centralized directory 

(WNoC-CD). We model all the architectures using VisualSim tool and derive the performance 
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characteristics such as communication latency, hop count, and power consumption. The proposed 

centralized directory is compared with traditional mesh and traditional WNoC architectures [81].  

However, centralized directory is not suitable for larger networks. The load on centralized 

directory could be heavy with larger networks and thus drawbacks such as delay, data 

synchronization, traffic and bandwidth issues may arise. To overcome the issues of centralized 

directory, distributed directories are introduced in WNoC, that is WNoC-DDs. The performance 

of WNoC-DDs is compared with traditional mesh, traditional WNoC, and WNoC-CD.  

As the number of cores increases, the challenges of enhancing performance increase. The 

performance of directory introduced to subnets will increase the overall performance. However, 

selection of center core that hosts the directory plays a key role in performance improvement and 

it could be better if the center core is in equal distance or closer to the other cores in its subnet. For 

large core architectures, the size of subnet is large and allocating a full subnet for low loads leads 

to underutilization of network and boosts power consumption. So, uniform partition of subnets for 

large core may not be satisfactory. Also, uniform subnets may not be suitable for different-sized 

applications. Considering the weaknesses of uniform partition, a non-uniform partition approach 

is examined.     

3.1 Designing Directories for WNoC Architectures 

In the design of centralized directory or distributed directories in WNoC architecture, the 

basic abstraction is identical. In both centralized and distributed directories, the purpose of the 

directories is to hold information about the cached copies. A powerful processor with a wireless 

router is used to host the directory. The center core of each subnet is integrated with a wireless 

router. The wireless router is capable of transmitting and receiving the data between the subnets. 
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The directory contains the information of all other subnets that includes data sync, minimal routing 

path, and it is integrated with wireless router in the central core of each subnet.  

WNoC-CD architecture has a single centralized directory and the directory is responsible 

for providing information about the cached copies. WNoC-DDs has distributed directories, where 

all directories are identical. The directory contains cores’ subnet addresses, the status of each 

cached block, and the addresses of the blocks that have been cached. The directory is dynamic in 

nature and the total number of directory entries depends on the number of cache blocks/lines per 

core. It is explained below with an example: 

Say, the cache size per core is 1 KB (1024 Bytes) and the size of each cache block (also 

known as, cache line) = 128 Bytes. So, the number of cache blocks = Total size of memory in 

cache / Size of each cache line = 1024 Bytes /128 Bytes = 8. Therefore, for an n-core system, n x 

(1 + 8) entries are required. In each row, one column for the core number and eight columns for 

eight blocks. Table 3.1 illustrates a row in directory that shows the initial stage of Core-1. Initially, 

the blocks for each core in the directory will be empty. Whenever a core caches data, the selective 

block address of the specific data is recorded to the corresponding block of that core. Table 3.1 

illustrates initial stage of Core-
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directory are made according to the outcomes of the requests for blocks made by the cores. For a 

1KB cache with 128B lines:  

(1) Initially all the blocks of directories would be empty with Status ‘0’ as shown in Table 3.1 

(2) After Core-1 makes a request to fetch 100th block of the next level cache/memory, the block 

number is 100 mod 8 = 4. The fetched data is stored in the 4th block of the cache of Core-1 (see 

Table 3.2) with Status ‘E’ (for Exclusive).  

(3) If the same/cached data is read again by Core-1, then there will be no change in Table 3.2. 

(4) If Core-1 performs a write operation on the cached block, then the status of the block will 

be changed to ‘M’ to indicate that the value is modified (as illustrated in Table 3.3). A protocol to 

manage cache consistency is explained next. 

With respect to the read/write requests, the state of a block in the directory changes 

accordingly as illustrated in Tables 3.1, 3.2, and 3.3. The directory keeps track of each cached 

block and maintains its state. The directories are updated, if there is any request of read or write to 

any core and thus it can send the data requested by a core.  

Another example: when a core requests for a read operation for the first time, the data of 

that selective memory location is read and stored in the appropriate block, the directory is updated 

with an ‘E’ (for Exclusive) and the block address. When a core requests a write operation on the 

same block, the state of that selective block is changed to ‘M’ (for Modified). For every write 

operation, the directory is updated with an ‘I’ (for Invalidate) for the other cached copies. The state 

‘S’ (for Shared) of a cached block means more than one cores are sharing that selective block. In 

case of multiple directories, u
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3.3 Proposed Architecture 1: Introduction of Centralized Directory in WNoC  

       Architecture with Uniform Partition of Subnets          

At the beginning, a 
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From the Figure 3.1, considering a 6x6 mesh topology, the cores are grouped into 3x3-core 

subnets, forming four quadrants. Each quadrant, that is each subnet communicates with other 

subnets through the centralized directory. Each dark core that is each center core supervises its 

own subnet and communicates with other subnets. The subnetting mechanism with the initiation 

of centralized directory improves the performance of the system in terms of latency, hop count, 

power consumption, and data synchronization. 

 
3.3.2 Communication between Subnets with Centralized Directory 

A directory is introduced in the center to hold the information of cached copies of all 

subnets. All the cores inside a subnet are local to the subnet and the cores outside of a subnet are 

remote cores for that subnet. A source core places its request for the data on the bus and if the data 

is no
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helps WNoC-C
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Unlike centralized directory, the major advantage of the distributed directories is performing the 

data sync by broadcasting the updates to all other directories without any waiting time. 

3.4.1 Clustering Cores into Uniform Subnets with an Individual Directory  

In this model, cores are divided into uniform subnets, and center core of each subnet is 

substituted with a directory and wireless router and is illustrated in Figure 3.2.  

 

Figure3.2: WNoC architecture with distributed directories 

Considering a 6x6 mesh topology, the cores are structured into 3x3-core subnets, forming 

four quadrants. In every subnet of Figure 3.2, Core-4 (0, 0.x) is a center core that contains a 

wireless router and an individual directory. The dotted line represents the wireless connections 

with the other subnets’ center core and they are connected to one another.  
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3.4.2 Communication between Subnets with D
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performs the necessary 
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3.5.1 Clustering Cores into Uniform and Non-Uniform Subnets with an Individual 

Directory 

To illustrate this approach, we consider a 64-core system with four subnets. Each subnet is 

segregated with 16-core and so we have four subnets. Figure 3.3 illustrates a 64-core architecture 

partitioned into four uniform subnets. The dark colored cores (e.g., core-9, 13, 41, and 45) are 

center cores with the directory and wireless router features.             

Each subnet is having its own directory. Previously, results of 36-
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• Selection of Center Core in Even Size Subnet 

The size of a subnet is always described in row x column approach. So, m x m subnet size 

indicates m number of rows and m number of columns. Finding a center for even subnet size is 

always challenging. For example, considering Subnet 0 of Figure 3.3, the possibility of retrieving 

exact center core is difficult.  Going closer, the opportunity for being center core is of equal priority 

to the cores 9, 10, 17, and 18. In this work, we are not considering any additional special cores and 

so we can’t make the even subnet size into an odd series. Selection of any above listed cores have  
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Figure 3.4: Non-uniform partition of  subnets in 64-core architecture 

3.5.2 Communication between Distributed Directories with D
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between source to destination is not only considered between directories but the complete path of 

serving the request.  
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parameters such as communication latency, hop count, and power consumption. In these 

architectures, we calculate the complete path of requests that involves from source to destination 

requests and vice-versa to complete the requests of data. In the workload, source core is the one 

who requests the data and the destination core is the one who delivers the data to source core upon 

request. Mesh architecture is not considered in the non-uniform study as they are not satisfactory 

when compared to directory-based WNoC architectures. This is proven in the proposed 1 and 

proposed 2 architectures.  So, the performance evaluation is only evaluated for uniform and non-

uniform partition of subnets. As stated, the path considerations are different, they are explained in 

detail with the exploration of parameters.  

• Communication Latency  

Communication latency is a measure of time taken for transmitting a packet from source 

core to destination core. Communication latency depends on hop count, type of architecture and 

protocols used for transmission of packets. The latency is a major performance parameter, which 

is essential to consider in any architecture for real-time or any kind of applications [84], [85], [86].  

Wormhole packet switching is considered for data delivery as it has very low transfer latency in 

transmitting packets. Say, a packet size of 64-bit flits is considered [87]. Where, the first flit is the 

header flit, which has the control information for delivering the packet to the destination address 

and followed by the actual payload. Intermediate nodes process just the first flit of the packet to 

know whether the packet is intended for itself or any other core. Only the destination core would 

process the whole packet.  Because of that the delay caused by the intermediate nodes is less 

compared to the delay caused by the destination core. In an intermediate core, the delay is caused 

due to processing only the first flit (say, 8 Bytes). However, in a destination core, the delay is 
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• Power C
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length between nodes. The performance of tasks can be observed individually as task wise for 

communication latency, hop count, and power consumption. The overall performance such as 

average calculation of each parameter gives precise statistics, whether to consider the new 

proposed architecture is beneficial compared to the other architectures. To find the decrease or 

improved performance of any parameter, the total column of each architecture is summed initially. 

The summed column of proposed architecture is subtracted from other architectures individually 

and finds the reduced difference.  

To find the average in percentage, the ratio of reduced difference when the proposed 

architecture is compared with other architectures to other individual architecture summed column, 

and then multiplied by 100. Mathematically, it can be represented as follows: 

To calculate average of parameters for n (n>1) number of tasks, when compared to mesh 

in %= 

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑀𝑀𝑃𝑃𝑀𝑀ℎ −   
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Table 4.2 (continued) 
Different 
Scenarios Source Core (S) Destination Core (D) Subnet Location 

Task 14 Core - > (1, 1.2) Core - > (0, 0.8) Out-Subnet 
Task 15 Core - > (1, 0.6) Core - > (0, 1.2) Out-Subnet 
Task 16 Core - > (1, 0.4) Core - > (0, 1.7) Out-Subnet 
Task 17 Core - > (1, 1.3) Core - > (0, 1.3) Out-Subnet 
Task 18 Core - > (0, 1.2) Core - > (1, 1.0) Out-Subnet 
Task 19 Core - > (0, 0.1) Core - > (1, 0.7) Out-Subnet 
Task 20 Core - > (1, 0.2) Core - > (0, 1.6) Out-Subnet 
Task 21 Core - > (0, 0.6) Core - > (0, 0.5) In-Subnet 
Task 22 Core - > (1, 0.7) Core - > (1, 0.8) In-Subnet 
Task 23 Core - > (0, 1.4) Core - > (0, 1.2) In-Subnet 
Task 24 Core - > (1, 1.6) Core - > (1, 1.2) In-Subnet 
Task 25 Core - > (0, 1.7) Core - > (0, 1.1) In-Subnet 

 

• Workload for Proposed Architecture 3 

Unlike 36-core architecture, a different workload is considered for the 64-core architecture. 

This workload allows us to compute the performance in different parameters according to job and 

individual task basis. The details of the workload are listed in Table 4.3. 

In this workload, tasks are included with in-subnet scenarios and out-subnet scenarios. The 

performance evaluation of the architecture is derived on job basis as well as individual task basis. 

The jobs are given sequentially and are serviced according to the request order. Here the jobs are 

not identical, where they differ in number of tasks and location of subnets that is in or out. 

To evaluate the best of the architectures, random tasks are generated where few tasks may 

give advantage to uniform subnets and some other to non-uniform subnet partition. Non-uniform 

subnet is a trade-off approach for large core architectures like more than 64-core. The method of 

proposed architecture 3 can be extended to any large number of cores. The random scenarios are 

generated using VisualSim tool for jobs, with an instruction to consider in or out-subnets.  

 



 

56 
 

Table 4.3: Workload for uniform and non-uniform subnets in 64-core architecture 

Different 
Scenarios 

Subtasks 
between 
Cores 

Uniform Partition Non-Uniform Partition 
Subnets 
Involved 

Subnet 
Location 

Subnets 
Involved 

Subnet 
Location 

Job 1 

18-54 S0, S3 Out S0, S3 Out 
59-19 S3, S0 Out S2, S0 Out 
19-51 S0, S3 Out S0, S2 Out 
18-50 S0, S2 Out S0, S2 Out 
58-26 S2, S0 Out S2, S0 Out 

Job 2 

19-20 S0,S1 Out S0 In 
60-51 S3,S2 Out S2 In 
52-50 S3,S2 Out S2 In 
24-20 S0,S1 Out S0 In 

Job 3 

6-28 S1 In S1, S0 Out 
31-20 S1 In S1, S0 Out 
63-39 S3 In S3, S1 Out 
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multiple routing in mesh topology, and traffic as well as broadcasting issues of traditional WNoC 

can be avoided. Data synchronization is easy with the directories as they are having proven history 
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If the destination is only one hop distance (Tasks such as 9, 18 and 22), then all the 

networks behave as mesh  and the communication latency is identical in mesh and WNoC-CD, but 

traditional WNoC takes additional latency to update the subnets.  

Table 4.4: Communication latency compared to WNoC-CD architecture 

Different Scenarios Traditional Mesh  
(ms) 

Traditional 
WNoC 

(ms) 

Proposed WNoC-CD 
(ms) 

Task 1: (0,0.0)-(1,1.8) 4x9+40=76 4x4+40=56 4x2+40=48 
Task 2: (0,0.4)-(1,1.4) 4x5+40=60 4x0+40=40 4x0+40=40 
Task 3: (0,0.7)-(1,0.1) 4x4+40=56 4x2+40=48 4x1+40=44 
Task 4: (0,0.3)-(0,1.5) 4x4+40=56 4x2+40=48 4x1+40=44 
Task 5: (1,0.5)-(0,1.2) 4x4+40=56 4x3+40=52 4x1+40=44 
Task 6: (1,0.7)-(0,1.5) 4x3+40=52 4x2+40=48 4x1+40=44 
Task 7: (0,1.0)-(1,0.0) 4x5+40=60 4x4+40=56 4x2+40=48 
Task 8: (0,0.8)-(1,1.6) 4x3+40=52 4x4+40=56 4x2+40=48 
Task 9: (0,0.7)-(0,1.1) 4x0+40=40 4x2+40=48 4x0+40=40 
Task 10: (1,1.5)-(1,0.2) 4x3+40=52 4x3+40=52 4x1+40=44 
Task 11: (0,1.3)-(0,0.1) 4x4+40=56 4x2+40=48 4x1+40=44 
Task 12: (0,1.4)-(1,0.6) 4x3+40=52 4x2+40=48 4x0+40=40 
Task 13: (1,0.1)-(1,1.1) 4x2+40=48 4x2+40=48 4x1+40=44 
Task 14: (1,1.2)-(0,0.8) 4x3+40=52 4x4+40=56 4x2+40=48 
Task 15: (1,0.6)-(0,1.2) 4x1+40=44 4x4+40=56 4x2+40=48 
Task 16: (1,0.4)-(0,1.7) 4x6+40=64 4x1+40=44 4x0+40=40 
Task 17: (1,1.3)-(0,1.3) 4x2+40=48 4x2+40=48 4x1+40=44 
Task 18: (0,1.2)-(1,1.0) 4x0+40=40 4x4+40=56 4x0+40=40 
Task 19: (0,0.1)-(1,0.7) 4x4+40=56 4x2+40=48 4x1+40=44 
Task 20: (1,0.2)-(0,1.6) 4x9+40=76 4x4+40=56 4x2+40=48 
Task 21: (0,0.6)-(0,0.5) 4x2+40=48 4x2+40=48 4x2+40=48 
Task 22: (1,0.7)-(1,0.8) 4x0+40=40 4x0+40=40 4x0+40=40 
Task 23: (0,1.4)-(0,1.2) 4x1+40=44 4x1+40=44 4x1+40=44 
Task 24: (1,1.6)-(1,1.2) 4x3+40=52 4x3+40=52 4x3+40=52 
Task 25: (0,1.7)-(0,1.1) 4x1+40=44 4x1+40=44 4x1+40=44 

 

The detailed explanation of Table 4.4 for each architecture can be better known by 

discussing with any task. Let’s consider the Task 1, which is the maximum distance between 

source and destination 
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if the delay due to an intermediate core is four units, the delay caused due to a destination core is 

assumed to be 40 units.  The intermediate cores check only the header flit and so each intermediate 

core causes four units of delay. In mesh, for Task 1, they are nine intermediate cores and one 

destination core excluding source core. So, delay due to nine intermediate cores will be 36 

(4*9=36) units and the destination core takes 40 units, which will make the total as 76 units. In 

WNoC-CD, the centralized directory is considered as destination core. So, in Task 1, it has two
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communicate between source and destination core it has 10 intermediate hops. Usually in mesh, it 

should get an acknowledgement to send any information. So, it has double path for source and 

destination which makes 20 hop counts. Similarly, to acknowledge the information is completely 

received from destination to source is also double which makes 20 hop count and so in total it has 

40 hop counts. In WNoC-CD, the request to fetch data is up to centralized directory that is three 

hops and then the return path is from destination to source core that is six hops, which makes the 

total as nine hops. In WNoC-DDs, the request to fetch is to its individual directory only as the 

directories are synced that takes two hops, and then the return path is five hops which makes the 

total as seven hops.   

4.4.3 Power Consumption 

To calculate the power (assumptions in Table 4.1) 
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Table 4.6: Power consumption compared to WNoC-CD architecture 
Different 
Scenarios 

Traditional Mesh  
 (mW) 

Traditional WNoC 
 (mW) 

Proposed WNoC-CD 
 (mW) 

Task 1: 
(0,0.0)-(1,1.8) 

P1=24, P2=24, P3=25, 
Ptot=73 

Psd=37.6, Pds=24.7 
Ptot=62.3 

Psdr=6.9, Pcdr=9.3 
Ptot=16.2 

Task 2: 
(0,0.4)-(1,1.4) 

P1=24, P2=24, P3=25, 
Ptot=73 

Psd=37.6, Pds=24.7 
Ptot =62.3 

Psdr=6.9, Pcdr=9.3 
Ptot=16.2 

Task 3: 
(0,0.7)-(1,0.1) 

P1=23, P2=23, P3=25 
Ptot=71 

Psd=31.6, Pds=12.7 
Ptot =44.3 

Psdr=9.9, Pcdr=9.3 
Ptot=19.2 
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Table 4.6 (continued) 



 

64 
 

In WNoC-CD: 
 
Ptot = Psdr + Pcdr (For Out-Subnet) 
Psdr=Pawrsn+(Pcwr*Ncwr)+Pcwl+Pwl = 2.5+(3*2)+3.3+1.1=12.9 
Pcdr= Pdr+Pcwl= 6 + 3.3 = 9.3 
Ptot=12.9+9.3=22.2 
Pds=Pawrsn+(Pcwr*Ncwr)+Pcwl  (For In
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the communication is also subnet to 
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WNoC-DDs perform better as they reduce the intermediate cores in performing data 

transfer between source to destination. WNoC-DDs follow the adaptive XY routing algorithm to 

transfer data between cores and it is advantageous as it searches for alternative paths if the traffic 

is high at the intermediate cores. The worst scenarios of mesh multicasting (such as end-to-end 

communication) and one hop away between two subnets scenarios of WNoC can be avoided in 

WNoC-DDs architecture. WNoC-DDs should take less time in all those scenarios. The detailed 

statistics of the use of the subnets is maintained and monitored by the directory. The destination 

cores are considered based on the activities of the subnets. Thus, the directory should help balance 

load by selecting the destination cores from different subnets (if possible). However, the routing 

path to communicate within the subnet (Tasks 21 to 25) is the same and so the delay is unique for 

all the three architectures namely traditional mesh, WNoC-CD, and proposed WNoC-DDs and is 

illustrated in Table 4.7. 

WNoC-DDs takes less time due to the introduction of distributed directories. The 

directories sync the data of their own subnet as well as other subnets through neighbor directories 

by using customized MESI protocol. As the directories are synced, they avoid broadcasting issues 

as well as bandwidth issues. So, when the source reaches its own subnet directory then it could be 

considered as it reached the destination. In WNoC-DDs, the individual directory is considered as 

destination. So, in Task 1 (0,0.0)-(1,1.8), it has only one intermediate core that takes four units and 

one destination (directory) core that takes 40 units, which will make the total as 44 units whereas 

the traditional mesh takes 76 units and WNoC-CD takes 48 units. 

4.5.2 Hop Count 

Hop count determines the number of hops involved in transferring data between source and 

destination. The performance can be higher if the number of hops reduced. In WNoC-DDs, the 
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hops are reduced as they skip the intermediate cores and mostly receives the data through its own 

subnet directory with minimal latency compared to WNoC-CD and other architectures. The 

number of hops involved for data transmission in each task is considered as hop count. The 

calculation of hop count for each task is illustrated in Table 4.8. 

Table 4.8: Hop count compared to WNoC-DDs architecture 

Different Scenarios Traditional Mesh  WNoC-CD Proposed WNoC-DDs 

Task 1: (0,0.0)-(1,1.8) 

HC= HT *2 (S to 
D)+ 

HT *2 (D to 
S)=20+20=40 

HC= HT (S to 
Directory)+ 

HT (D to S) =3+6=9 

HC= HT (S to 
Directory)+ 

HT (D to S) =2+5=7 

Task 2: (0,0.4)-(1,1.4) HC=12+12=24 HC=1+2=3 HC=0+1=1 
Task 3: (0,0.7)-(1,0.1) HC=10+10=20 HC=2+4=6 HC=1+3=4 
Task 4: (0,0.3)-(0,1.5) HC=10+10=20 HC=2+4=6 HC=1+3=4 
Task 5: (1,0.5)-(0,1.2) HC=10+10=20 HC=2+5=7 HC=1+4=5 
Task 6: (1,0.7)-(0,1.5) HC=8+8=16 HC=2+4=6 HC=1+3=4 
Task 7: (0,1.0)-(1,0.0) HC=12+12=24 HC=3+6=9
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Table 4.9 (continued) 

Different Scenarios Traditional Mesh 
(mW) 

WNoC-CD 
(mW) 

Proposed 
WNoC-DDs 

(mW) 

Task 21: (0,0.6)-(0,0.5) P1=15, P2=15, P3=25 
Ptot=55 

Psdr=15.9, Pds=14.8 
Ptot=30.7 

Ptot= Psdd + Pdsddr 
=20.8+17.5 

=38.3 

Task 22: (1,0.7)-(1,0.8) P1=7, P2=7, P3=25 
Ptot=39 

Psdr=12.9, Pds=8.5 
Ptot=21.4 

P

P=20.8+17.5  
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core and thus increases latency. Hence non-uniform subnets are introduced to overcome the 

latency issues. The thumb rule in determining the subnet size in non-uniform partition is to select 

odd number of cores like 9, 15, and 25. This sort of clustering, benefits to find the approximate 

center core and it brings a tradeoff superiority to all the neighbor cores in a subnet. Also, the small 

and large subnet division allows us to assign subnets for distinct application loads. As each subnet 

is assigned with a directory as well as wireless router like proposed architectures 1 and 2, the 

latency and power consumption can be reduced. 

To reach an agreement, which partition is better, uniform or non-uniform, one should go 

through the examination of performance parameters. In these architectures, different jobs are 

considered as loads and the performance is observed as an average of all jobs as well as individual 

jobs. The performance parameters examined in these architectures are communication latency, hop 

count, and power consumption. In the proposed architecture 3, traditional mesh, traditional WNoC, 

and WNoC-CD discussions are avoided as it is significantly proven that distributed directory 

architecture performs better than the above-mentioned architectures. 

4.6.1 Communication Latency 

The communication latency is calculated on job basis and on individual task basis. When 
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The detailed calculations of communication latency can be observed in Table 4.10. There 

are 6 jobs in total and individual tasks are 31 in total.  

Table 4.10: Communication latency of 64-core architecture with uniform and non-uniform 
subnets 

Different 
Scenarios 

Subtasks 
between Cores 

Uniform Partition 
(ms) 

Non-Uniform Partition 
(ms) 

Job 1 

18-54 3x4+4x4+4x4+40=84 0+2x4+0x4+40=48 
59-19 5x4+5x4+7x4+40=108 3x4+3x4+3x4+40=76 
19-51 4x4+5x4+6x4+40=100 2x4+3x4+2x4+40=68 
18-50 3x4+4x4+4x4+40=84 0+2x4+2x4+40=56 
58-26 4x4+5x4+6x4+40=100 2x4+3x4+2x4+40=68 

Job 2 

19-20 0+2x4+0x4+40=48 0+2x4+0x4+40=48 
60-51 4x4+5x4+6x4+40=100 4x4+2x4+3x4+40=76 
52-50 3x4+4x4+4x4+40=84 3x4+0+1x4+40=56 
24-20 4x4+4x4+5x4+40=92 4x4+3x4+4x4+40=84 

Job 3 

6-28 3x4+4x4+4x4+40=84 3x4+5x4+5x4+40=92 
31-20 5x4+3x4+3x4+40=84 3x4+4x4+4x4+40=84 
63-39 5x4+4x4+2x4+40=80 3x4+5x4+5x4+40=92 
59-35 5x4+4x4+2x4+40=80 3x4+5x4+5x4+40=92 

Job 4 
 

19-35 4x4+
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packet. The latency between intermediate cores through a single hop is four units and the 

destination core include a latency of 40 units as it must read the full packet. These assumptions are 

like previous architectures and the details are well explained in the above sections for 36-core 

architectures. An individual core always knows, its one hop distance cores that is East, West, 

North, and South cores. For any task, the latency is evaluated by considering the number of cores 

involved in the process from source to destination and vice-versa. Generally, the cores involved in 

each task is based on the routing strategy and size of subnet where partition plays a vital role. On 

average, non-uniform partition has more potential than uniform and the results are quite 

satisfactory.  

The path calculation for computing latency in mathematical representation is as follows: 

Latency= Know the destination (Source to Directory) + Directory request to destination 

core (Directory to destination) + Send data from destination to source core directly. 

By using the above mathematical expression, the latency for each job is calculated for both 

uniform and non-uniform partitions and then finally compared to analyze the performance. 

4.6.2 Hop Count 

Hop is a link between two cores that is wired, or wireless connected. Cores communicate 

each other with these links and the error-free connection ensures trustworthy communication. The 

computation of hop count is analyzed for job and individual task basis. The hop count in both 

uniform and non-uniform partitions, does not require any return or acknowledgement. This 

approach will reduce the number of hops in larger when compared to traditional mesh 

architectures. Number of hops required for any job is based on the number of links that are 

connected to cores. If a greater number of hops involved for data transmission, then the 

comprehensive hop counts of that task will be larger.  
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are given highest priority which will resolve the performance of the system. Unlike uniform 

partition, non-uniform partition has small and large subnets. Eventually, smaller subnets require 

less hops when compared to larger subnets. However, it takes more hops if larger subnet is 

considered. As the workload is random, the outcome performance in both partition methods will 

determine the best approach of logical splitting of subnets.  

Two cores communicate directly only when they are at one hop distance. However, after 

data exchange between cores, it is essential to update the directory to get rid of data 

synchronization issues. In such cases, mesh topology may be advantage but on average of random 

workloads, the directory-based architectures proved their performance is immense. We can also 
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Table 4.12 (continued) 

Different 
Scenarios 

Subtasks 
between Cores 

Uniform Partition 
(mW) 

Non-Uniform Partition 
(mW) 

Job 4 
 

19-35 Psd =33.3, Pds=33.3 
Ptot=66.6 

Psd =27.3, Pds=9 
Ptot=36.3 

17-34 Psd =24.3, Pds=24.3 
Ptot=48.6 

Psd =24.3, Pds=12 
Ptot=36.3 

38-14 Psd =24.3, Pds=24.3 
Ptot=48.6 

Psd =24.3, Pds=15 
Ptot=39.3 

49-52 Psd =24.3, Pds=24.3 
Ptot=48.6 

Psd =24.3, Pds=15 
Ptot

ds
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For In-subnet: 

The data transmission for in-subnet is slightly different from other scenarios. If they are 

not at one hop distance, then the request goes to directory, but the return path is not necessarily 

through directory as they are in same subnet. The directory informs the destination core to send 

the data directly to source if the directory finds the destination is not busy.    

Psd = Power from source to directory (Psdr) + Power from directory to destination  

Pds = Power from destination to source + Update other directories 

According to the experimental results, the power consumption in non-uniform subnets may 

be higher for some special tasks (e.g., Job 6 Subtasks between cores 9-45 and 13-41), but on 

average, the performance of non-uniform subnets compared to uniform partition of subnets with 

large number of cores is impressive. 
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CHAPTER 5   

 RESULTS AND DISCUSSION 

In this chapter, first we discuss results of the proposed WNoC-CD, and WNoC-DDs 

architectures. Then, we discuss the results of the non-uniform partition of subnets with WNoC-

DDs as proposed architecture 3. For proposed architectures 1 and 2, the same workload is used. 

We use 25 different communication tasks as workload by considering in-subnet and out-subnet 

scenarios. Then the pe]TJ
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Figure 5.1: Communication latency compared to WNoC-CD architecture  

From Figure 5.2, by considering all the 
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5.1.2 Hop Count 

The hop counts due to the mesh, WNoC, and proposed WNoC-CD architectures for all 25 

tasks are illustrated in Figure 5.3. WNoC-CD reduces extra hops compared to mesh or traditional 

broadcasting WNoC as the directory supervises the routers in establishing the path between source 

and destination cores. However, WNoC requires few extra hops based on the task to update the  

directory for maintaining data sync. This process does not affect the performance compared to 

mesh and traditional 
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From Figure 5.4, it can be observed that the hop count due to the WNoC-CD architecture 

is reduced by 62.03% when compared with the mesh architecture, and 52.65% when compared to 

traditional WNoC architecture.  

 

Figure 5.4: Average hop count compared to WNoC-CD architecture 

5.1.3 Power Consumption 

Power consumption due to the mesh, traditional WNoC, and proposed WNoC-CD 

architectures for all the tasks is illustrated in Figure 5.5. It should be noted that the amount of 

power consumption is different in each subnet as broadcasting is involved in traditional WNoC 

and the update of data is essential with the centralized directory. Thus, the power consumption 

varies for each individual task. The power consumption in mesh architecture is maximum because 

the average of the whole network is considered, whereas the traditional WNoC and WNoC-CD 

architectures consumes less power due to the introduction of subnets. WNoC-CD architecture 

consumes power based on subnet usage and the non-active subnets are idle and the power 

consumption of idle subnets is negligible. 
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From Figure 5.6, it can be observed that the power consumption due to the proposed 

WNoC-CD architecture is reduced by 66.96% when compared with that of the mesh architecture, 

and 57.3% when compared with traditional WNoC architecture.  

 

Figure 5.5: Power consumption compared to WNoC-CD architecture 

 

Figure 5.6: Average power consumption compared to WNoC-CD architecture 
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5.2 Evaluation of Proposed Architecture 2 

In this work, we introduce directory in each subnet and so it is termed as WNoC 

architecture with distributed directories (WNoC-
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Figure 5.7: Communication latency compared to WNoC-DDs architecture 

From Figure 5.8, by considering all the tasks, it is observed that the WNoC-DDs 

architecture help reduce the communication delay, in an average, by 20.54% compared to mesh 

architecture, and 5.40% compared to WNoC-
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5.2.2 Hop Count 

The hop counts due to the mesh, WNoC-CD, and proposed WNoC-DDs architectures for 

all 25 tasks are illustrated in Figure 5.9. WNoC-CD needs extra hops (based on task) to update the 

centralized directory for maintaining data sync. In WNoC, for Task 14 and Task 15, the hop count 

is maximum when compared to other architectures. The directory handles the request of each 

source core and ensures data transfer from the destination core to1M8lw-0.004 Tc 0.001.0 Td
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For Tasks 21, 22, 23, 24, and 25 the power consumption is slightly large compared to 

WNoC-CD, but it is suitable for large network with reduced traffic. However, the proposed 

architecture power consumption is less for any individual task when compared to mesh 

architecture. 

From Figure 5.12, it can be observed that the power consumption due to the proposed 

architecture is reduced by 73.56% when compared with that of the mesh architecture, and 19.97% 

when compared with that of the WNoC-CD architecture. This is because the proposed distributed 
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performance of the architecture. In this section, we compare the performance parameters such as 

latency, hop count, and power consumption in both uniform and no-uniform partition of subnets. 

5.3.1 Communication Latency 

In this work, we considered 6 jobs where each job has individual subtasks. The 
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the non-uniform partitions, where small to large subnets existence can improve performance for 

many jobs on random. On average, non-uniform subnets perform well when compared to uniform. 

Figure. 5.14 illustrates the average performance according to the job. From the Figure 5.14, 

it can be observed that non-uniform partition of subnets performs better in 4 jobs out of 6 jobs. Job 

6 performance is identical as the jobs are from directory to directory. These random workloads 

generated by VisualSim tool provides substantial information that non-uniform partition of subnets 

perform well.   

 

Figure 5.14: Average communication latency on job basis 

From Figure 5.15, by considering all the tasks, it is observed that the non-uniform subnets 

64-core architecture help reduce the communication delay, in an average, by 11.11% compared to 

uniform subnet architecture.  

476

324 328

588

432

264

316

264

360

544

396

264

0

100

200

300

400

500

600

700

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

C
om

m
un

ic
at

io
n 

L
at

en
cy

 (m
s)

Average Communication Latency on Job Basis

Uniform Subnets Non-Uniform Subnets





 

93 
 

 

 

Figure 
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architecture. This is because the non-uniform subnets have close center core with distinct size of 

subnets in its architecture.  

 

Figure 5.18: Average hop count of 64-core architecture 

5.3.3 Power Consumption 

Power consumption due to the uniform and non-uniform subnets 64-core architectures for 

all jobs is illustrated in Figure 5.19. The power consumption is different from one other even 

though both are WNoC-DDs architecture as they differ in logical partition. The change in subnet 

size varies the position of center core and neighbor cores. Thus, the routing path for jobs through 

individual tasks differ. The performance of the architecture will be considered best if the power 

consumption is reduced. The selection of any architecture mostly relies on latency and power 

consumption. The results of the architectures shown that non-uniform subnets perform well when 

compared to traditional uniform subnets. 
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Few in-subnet jobs may take more power as they traditionally follow mesh and updating 

the directories. However, as the subnet size varies, eventually power consumption in both 

architectures also varies. 

 

Figure 5.19: Power consumption of uniform and non-uniform subnets in 64-core architecture 

Power consumption calculation is determined by the number of cores, wired-wireless 

routers, and directories involved in transferring the data between source and destination core. For 

every job, the above listed resources are considered and is illustrated in Figure 5.20. To make the 
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positions. The dissimilar sizes of subnet prove that the performance is improved, and they are 

potential when considering other performance parameters too. 

 

Figure 5.20: Average power consumption on job basis 

 

Figure 5.21: Average power consumption of 64-core architecture 
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CHAPTER 6 

CONCLUSIONS AND FUTURE EXTENSIONS 

In this research, we analyzed different architectures such as mesh, WNoC, WNoC-CD, 

WNoC-DD of 36-core capacity. Further, the research is extended to 64-core architecture. WNoC-

DDs proved they are best when compared to other architectures. WNoC-CD architecture is not 

considered for 64-core as there are lot of bottlenecks such as traffic and subnet utilization to ensure 

performance. A single directory is not good enough to handle 64-core and so its workload.  

6.1 Conclusions 

Multicore architectures help improve performance to power ratio by concurrently using 

multiple cores. Contemporary multicore architectures have multilevel cache memory organization. 

Due to the presence of caches, multicore architectures suffer from high core-to-core 

communication latency and power consumption. Studies suggest that directory-based architecture 
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compared to the traditional WNoC architecture. The performance improvement in WNoC-CD 

architecture is by reducing the total number of hops.  

However, they are several challenges with WNoC-CD architecture such as latency due to 

waiting time of tasks and for every out-subnet task the subnet must request the centralized 

directory. WNoC-CD architectures are not suitable for larger number of cores. To address the 

issues of WNoC-CD, we introduce a uniform subnet partition of WNoC architecture with 

distributed directories (WNoC-DDs) as proposed architecture 2. A directory allows the tasks to 

execute faster by providing adaptive minimal routing path to reach the destination node. VisualSim 

Architect is used to model and simulate the architectures by using synthetic workload and the 

workload is identical to proposed WNoC-CD. It is observed that the distributed directories 

significantly improve the performance of WNoC architecture, which supports the adaptability of 

WNoC-DDs to larger networks. With the proposed WNoC-DDs, individual subnets can operate 

simultaneously if/as the cores acquire the required data from its own subnet. As the individual 

directory maintains/tracks the status of other directories, it would take less time for processing 

without or any further queries for the required data. Experimental results show that the proposed 

WNoC-DDs reduces communication delay up to 20.54% and 5.40%, respectively, when compared 

to mesh and WNoC-CD. Similarly, the proposed WNoC-DDs reduces power consumption up to 

73.56% and 19.97%, respectively, when compared to mesh and WNoC-CD. Finally, each of the 

distributed directories can control substantial number of cores compared to centralized directory.  

With the increased number of cores, the performance may be improved but the 

complexities in coordinating with peer cores is always challenging. A 64-core architecture is 

considered with a different workload that has six jobs, which is divided into 31 subtasks. In WNoC 

architectures, the performance is mostly based on partition of subnets and the routing algorithms 
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followed. Uniform partition with increased number of cores leads to underutilization of cores, 

latency and power consumption due to the shift of center core. To address the issues of uniform 

partition, we introduce a non-uniform partition in WNoC-DDs as proposed architecture 3 to get 

advantage of getting closer center core in larger number of cores. The non-uniform partition is also 

satisfactory to assign subnets according to the workload such as number of cores required to 

complete the given job. The proposed technique can be applied to further large number of cores.  

The designs and models are simulated using VisualSim tool. The tool allows to analyze the 

parameters and conveys useful information and provides trade-off performance of architectures. 

According to the experimental results, non-uniform WNoC-DD architectures helps in reducing the 

communication delay by up to 11.11%, hop count is reduced up to 26.26%, and the total power 

consumption by up to 14.76% when compared with the uniform subnets partition architecture. 

This is due to the selection of closer center cores and serving the subnets according to the range of 

cores required by a job. Thus, the introduction of non-uniform subnets is appropriate to address 

the issues of uniform subnets. Non-uniform subnets are with different subnet sizes and thus they 

give the opportunity of assigning workloads based on the subnet size. In such a way, the utilization 

is extended and reducing the latency, hop count, and power consumption.  

6.2 Future Extensions 

This work can be extended for future multicore/many-core system analysis. Some possible 

extensions are listed below: 

• Designing, modeling, and simulating CPU-GPU architectures for big data analytics. 

• Adding traffic parameters to the simulation of proposed architectures to check the range of 

workload that is enforced on a single hop and calculate bandwidth utilization and the range 

for each workload. 



 

100 
 

• Simulating multicore/many-core architectures to allow non-uniform subnets with dynamic 

working strategy to study performance. 

• Study on 3D NoC architectures and investigate the impact of combining 3D routers with 

3D processor architectures.
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