

© Copyright 2018 by

iii

DEDICATION

‘To my parents, friends, and family members’

iv

ACKNOWLEDGEMENTS

I am very thankful to my dissertation advisor Dr. Abu Asaduzzaman for his continuous

encouragement and support throughout my research work. His timely supervision on my progress

and guidance helped me to complete this research on time.

v

Most of all for my loving, favorable, patient, and determined wife Sahithi Chidella whose

faithful support during all stages of my life and Ph.D. is much appreciated. I am thankful to god

for giving me such a nice, kind and understandable wife as my partner. I may not reach this point,

without the inspiration of my wife. To my beloved son, Venu Karthikeya and daughter Mishu

Ishaanvi, I would like to express my thanks for being good all the time and always making me

cherish and reenergized to accomplish the goals.

 Kishore Konda Chidella

 Wichita State University

 December 2018

vi

ABSTRACT

Network-on-Chip (NoC) architectures have emerged as a promising technology for modern

computer systems to address the design challenges of high-performance computing systems.

Wireless NoC (WNoC) architectures are introduced to improve performance by reducing the core-

to-core communication latency. Conventional WNoCs broadcast messages that increase

vii

 TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION ...1
1.1 Computer Architectures ..4

1.1.1 Single-Core Architectures ...4
1.1.2 Multicore Architectures ..6

1.2 Cache Coherence in Multicore Architectures ..9
1.3 Performance Issues of Network Topologies ..12
1.4

ix

TABLE OF CONTENTS (continued)

Chapter Page

5.3 Evaluation of Proposed Architecture 3 ..95
5.3.1 Communication Latency ..96
5.3.2 Hop Count ..98
5.3.3 Power Consumption ...100

6. CONCLUSIONS AND FUTURE EXTENSIONS ..103

6.1 Conclusions ...103
6.2 Future Extensions ..105

REFERENCES ..107

x

LIST OF TABLES

Table Page

3.1 A row in directory that shows initial stage of core-1 ...38

3.2 A row in directory showing changes after reading a block by core-138

3.3 A row in directory showing changes for write in a block of core-139

3.4 System parameters of a directory ...39

4.1 Considerations and assumptions for power calculations ..55

4.2 Source and destination cor

xiv

xv

LIST OF ABBREVIATIONS (continued)

PE Processing Element

PFLOP Petaflop

NI Network Interface

NoC Network-on-Chip

PWI

1

CHAPTER 1

INTRODUCTION

Computing is a critical task of modern technology, where it uses computers to manage and

process the information. The revolution of computation led to the developments and improvements

in designing low-cost microprocessors. According to Moore’s law the number of transistors on the

chip doubles about every two years. Till recent times we have been able to push more and more

transistors on a single chip, but one day we will reach a limit that a transistor may be one atom

length, this will be an absolute limit on the Moore’s law [1], [2].

3

4

5

transistors. The performance of a single-core architecture can be enhanced if the core accesses the

data quickly and it can be achieved with the introduction of a dedicated cache. The cache memory

stores the frequent data and so the latency can be reduced if it is not accessing the main memory.

However, the size of cache memory is small, and so the latency is a major issue in single-core

architectures. So, for complex computations or multitask environments, single-core architectures

are not satisfactory. Mostly, the processors manufactured before 2005 are single-core and they are

cheap now with the evolution of multicore architectures. Figure 1.1 illustrates a simple single-core

CPU architecture, which has an arithmetic logic unit (ALU) and is possible to execute only a single

instruction at a time.

Figure 1.1: Single-core architecture

As time goes on, the modern requirements are not satisfied with the existed single-core

architectures as they have certain limitations in multitasking. Single-core based modeling and

simulation techniques are not adequate to design modern multicore embedded systems [28].

Multicore processors are emerged to deal with the multiple tasks/applications given to the

processor at any given instant of time. Multicore system has multiple cores that can be on a single

or multiple system. Po8 0 Td
[(a)- (o)2 (s)1.1 (s)0.9D.istede

6

assigned to perform

7

According to multicore architecture design techniques, four cores running at one fourth of

the frequency can approach the performance of a single-core running at full frequency, while the

quad-core power consumption is less. If the cores are increased, it would be an advantage for

software applications as they have more threads. The multicore architectures are capable to handle

multithreaded parallel processing. Multiple threads on multiple cores can be executed

simultaneously at the same processor cycle [29], [30].

Multicore systems are designed in a way that two or more cores are coupled together to

work concurrently in parallel for increasing execution speed of complex jobs which need multiple

operations to be done at a single instant of time. In multicore architectures, speed can be enhanced

if the cores access the data quickly and it can accomplish when all the cores have their own

dedicated cache. To reduce the latency between the cores, cache levels can be expanded further.

However, the performance of multicore also relies on the type of cache utilized such as dedicated

and sharing. With the introduction of cache in multicore architectures, cache coherence is a major

issue when the cached data from cores is not updated in the shared memory. Figure 1.3 illustrates

the multicore architectures organization with dedicated cache and shared cache [31].

(a)

2

Figure 1.3 (a) illustrates the AMD Opteron organization, where CL1 is divided into L1 data

cache and L1 instruction cache with dedicated CL2 for each core. Figure 1.3 (b) illustrates the Intel

Core Duo organization that has a dedicated CL1 for instruction and data with a shared CL2 cache.

In all the multicore architectures, the main memory is shared and so the cache coherence problems

arise if the cached data of the cores are not updated. Multicore architectures are reliable with

improved performance for network-on-chip (NoC) architectures. Even though multicore

processors have become important, there are still many issues that designers face while designing

more than one processing core on a chip. For efficient on-chip communication, there are certain

constraints to be considered, such as limited area, communication latency, and power

consumption. To combat unnecessary power consumption, many designs incorporate a power

control unit which has the authority to shut down unused cores and limits the consumption of

power [32]. The bus based multicore architecture [33] is suitable for small number of cores (say,

4-8) with dedicated wires to the cores. However, the manufacturing of chips using dedicated wires

would consume more power but offers no or little performance improvement. The inefficiency of

dedicated wires resulted in a shift to on-chip networks and incorporating wireless communication

among cores. NoC provides a more scalable solution for the multicore architectures.

The scaling difficulties of uniprocessor architectures lead to the evolution of chip

multiprocessors (CMPs). To increase the number of cores in a scalable way, the research and

evaluation on NoC architectures predominantly increased. The memory hierarchy, interconnect,

wiring schemes, routing architecture, network topologies, and power optimization techniques play

a key role in the performance of CMP designs as well as NoC architectures. The advanced

multicore chip supports several cores say, 10 to 100 or more on a chip and their performance is

3

1.2 Cache Coherence in Multicore Architectures

Single-core architectures are having limitations to speed up by increasing clock frequency

as they dissipate enormous heat and consume more power. Then the existence of multicore

architectures raised as they are good to distribute work among cores and they can work

concurrently to complete the given task successfully. To cut down the costs of multicore

architectures, shared memory is introduced. In multicore architecture, cores in a group work

together in parallel according to the given assignments and there is a need of data exchange

between cores in this process. Due to the

4

Figure 1.4 illustrates the cache organization of a two-core CPU. Here, each core h14 (r)]TJ
0 T td

5

whichever read the new value of X after the update of processor P0, a new mechanism is required

to update the main memory location value as well as all other processors who will be using it.

Figure 1.5: Cache coherence example

8

In traditional mesh architecture, communication latency, power consumption, and hop

count are high due to its architecture design and routing protocol. Mesh architecture is completely

wired interconnects and thus having scaling issues. Traditional mesh architectures make use of

entire architecture for any application and so they may face underutilization challenges for small

applications.

In traditional WNoC, even though wireless routers and clusters division is implemented to

address the issues of traditional mesh architecture, it still has the problems with incoherent data,

broadcasting, and traffic issues which also increases power consumption. So, a novel architecture

is required to reduce wired interconnects, communication latency, cache coherence, data

synchronization, and power consumption.

However, as the number of cores increase, the complexity of controlling the architecture

in terms of latency, wired/wireless links are always challenging. Instead of using the entire network

for a single application, the subnets partition helps to reduce latency and power consumption. The

partition of cores into the subnets improve the system performance and they can be categorized

into uniform and non-uniform partition. Uniform partition leads to underutilization of cores and

more power consumption for smaller applications. Logical partition of subnets to find a center core

is always challenging as the number of cores increase mostly if the size of architecture is of even

size.

1.5 Contributions

In this work]TJ
-0.004 Tc 0.004 TM4 (s)aj9 (l)- (co)-4(e.)]TJ
0 Tc 02Tw
0 Tc Td
(]TJ
-0.004 Tc 0.004(cd
(fo)Tj
0 Tc 0 T190.32 0 Tdt2 (i)-2 (r)3 (i)bu)4 (t)-2 (i)-2 (ons)-1 (i)n10 (t)-i6 (t)-2 (s)-4 (or)3 (e)4 (s)e2 (c)4 (a4 (or3 (ch-1 (i)n0 ()-10 (a)4 (l)uo unde:n, t)--8 ())Tj
EET
BT
/LBody
/P <</M()D 4 >>BDC2_
/TT0 114
0
/T2/T26/T28.60.0m
<0078>(foDC 2/TT0 1 Td
(DC
/TT0 1 Tw3Tc 0 T50.32 0 TI)13 Tdt2 (i)-2 (rodu0 ()-10 (a-2 (t)-2 (i)-2 (on of)(nd a)4 ()]TJ
-0.004 T530.00490.32 0 Te-6 (n)t4 (i)-4 (r)-4 (al)-5 (i)-6 (z)-1d5 (e)-d (ch)-4 (i)-4 (r)-1 (ect) (co)-4 s)-21(e.)]TJ
0 Tc 08Tw 0.32 0 Td
(]TJ
-0.004 T530.0040.7 8.98 0 T5 (i)-6 (n)1 (.)-W (.)-N2 (i)-6 (n)C)-7(f)9 (ar)-1 (ch)-4 (i)-6 (t)-6 (ect)-6 (u)-4 (r)-1(e.)]TJ
0 Tc 0 Td
(]TJ
-0.004 T530.004 Tw 10.67 0 T (ect) (en)-1-4 (r)-d(e n)-4 (u)c- (nd)-18 ())Tj
EET
/Artifact BTj
E1 g
5 (y72 9in)64 T(n)-6 re
f*))Tj
EBT
/LBody
/P <</M(1)D 4 >>B0 g
)Tj
0 Tc 0 4
0
/T2/T444 T1.00.0m
[-10 (aom (i)-2 (m)un4 ()]TJ
2.004 Tc -2.004 Tic(le)6 (a (titio)2 (n)2)6 (a e (te)6 (n)2 (a)-142(m)-2 -[(U)4 (nd (e.)]TJ
0 Tc 0 1J
-00 Tc 0 14 (pow)24e)-6 (r)3 (c)4 (ons)-1 (um)-2 (pt)-2 (i)-2 8 ()]TJ
-0.004 Tc10.004 Tb4 (a)-14(l)- ad6 (n)d5 1co)-4 (r)-1 (es)-4 (s)5 (i)-6 en)-14 (g)()-10 9y)19ac-6 (h)-41 (co)h6 (n)e4 (cr)-e-6 (n)ce-2 (r)3 33 g

9

• Introduction of distributed directories to overcome centralized directory issues such

as network scalability and performance.

• Introduction of non-uniform partitioning in WNoC to improve core utilization and

performance.

• Other contributions include: Introduction of a simulation platform and introduced

workload characterization for multicore WNoC simulation.

1.6 Dissertation Organization

The dissertation is organized as follows:

In Chapter 2, literature survey on

10

CHAPTER 2

LITERATURE SURVEY

In this chapter, we discuss some related published articles as background work and

motivation. We start with cache memory hierarchy in single-core and multicore architectures.

Then we discuss how DASH architecture addresses cache coherence, and how popular

interconnection network topologies such as bus, crossbar and mesh topologies are used. Finally,

we discuss WNoC topology and clustering of WNoC cores into uniform and non-uniform subnets.

2.1 Cache Memory Hierarchy

Cache is a hardware that is used to store data close to the CPU to improve performance.

Normally, each core has its own cache memory. Single-core architectures can improve

performance with increased clock frequency but consumes more power which is nearly 73% with

20% increase of clock frequency. However, with the introduction of a second core, without

increasing the frequency, the performance can be improved to 73% with minimal rise of power

consumption compared to single-core [45]. Then the designers developed multicore architectures

and introduced parallel processing methods such as thread level parallelism (TLP). Multicore

supports TLP to boost up performance.

2.1.1 Cache in Single-Core Architectures

To improve the performance of a processor, cache is introduced between the main memory

and the CPU. During

11

introduced to reduce cache miss. CL2 can be shared or dedicated based on the type of architecture.

In this research, shared off-chip CL2 is considered. The cache levels are further increased to

improve the performance, but they are always shared to cut down the costs. The latency is

minimum if CL1 has requested data, but it increases if there is a miss in CL1 and its ascending

from there on to main memory. Figure 2.1 illustrates the Celeron processor [46] with 2x16 KB L1

cache and 128 KB L2 on-chip cache levels in single-core architecture. The on-chip CL2 increases

the cost of the system.

(a)

(b)

Figure 2.1: Examples of cache organization in single-core architectures: (a) Single-core Celeron processor with

private CL1 and on-chip CL2 (b) Single-core Pentium II Xeon processor with private CL1 and off-chip CL2

In some processors, CL2 is off-chip and is close to main memory. Figure 2.2 illustrates the

Pentium II Xeon processor [46] with 2x16 KB L1 cache and 512 KB to 2 MB L2 off-chip cache

levels in single-core architecture.

12

2.1.2 Cache in Multicore Architectures

The multicore architecture is a single physical chip that has more than one core. As cores

increase, multiple requests to main memory leads to traffic, and latency. So private CL1 is

accommodated for each core and thus individual data requests to main memory can be reduced.

To incur the costs and improve performance, shared

13

 The communication latency to fetch data from cores depends on the level of cache where

the data is available. To wind up, the latency and power consumption is maximum when the cores

try to fetch data from main memory. To reduce the latency and power consumption, suitable

coherence protocols between main memory and cores must be established.

2.1.3 Cache Coherence Protocols in Multicore Architectures

The main reason of using cache is to reduce the execution time of CPUs. If the data is

referenced in cache, then it completes the execution in less CPU cycles rather than consuming

more cycles when re

14

bandwidth, power, and increase latency for non-shared data compared to shared data. These

broadcasting techniques shows that on average, 67% of broadcasts are unnecessary [51].

Traditional pure write update (PWU) protocol has low network latency but high bandwidth

15

In MESI protocol, for a read miss, the cache block is moved to either shared or exclusive

based on the cache status that is shared or not. If the cache is shared, then the cache will be in

shared state, else in exclusive that indicates the data is consistent with main memory. The

advantage of MESI protocol is the capability of avoiding bus invalidation. MESI simply skips bus

transaction to write to cache instead they move to modified state.

Directory-based cache coherence protocols are better for large core architectures and

address the issues of snoopy protocols [54]. Figure 2.4 illustrates the block diagram of directory-

based cache coherence protocol. From the Figure 2.4, multiple sharer groups are connected to a

shared directory along with L2 cache. Each group individually has different number of processors

less than 32 in number and follows a snoopy protocol. Here, the directory receives the requests

from each core individually from a sharer group to reduce the network bandwidth. The directory

maintains the processor information/data and thus it reduces the latency.

Figure 2.4: Block diagram of directory-

16

The performance improvement by reducing cache coherence in multicore architectures can

17

cores and provides scalability of cores as it does not have any single control unit. DASH protocol

does not rely on broadcast messages and instead uses point-to-point messages sent between

processors and memories to keep caches consistent [58].

18

2.3 Interconnection Network Topologies

In this subsection, we discuss some popular network topologies such as bus, crossbar and

mesh. In parallel architectures, network topologies refer to the type of interconnections

19

terminators wouldn’t be expensive, and the network doesn’t require any additional hubs or

switches to establish communication between nodes.

Figure 2.6: Bus network topology

In bus topology, if single node is down, then it wouldn’t affect the entire network.

However, if the bus or main cable fails then it affects the entire network. Additional devices can

be easily connected to the network. But the performance can be degraded with increased nodes,

data size, and not suitable for heavy traffic [61]. The central cable length has a limit and thus the

number of nodes connected to cable, which brings the issues of scalability. In case of time-shared

common bus, only a single communication between two processors or access of main memory is

possible with a limited transfer rate. Also, the troubleshooting is difficult to manage in large

networks.

2.3.2 Crossbar Topology

In crossbar topology, the switches are arranged in a matrix configuration that has multiple

input and output lines as illustrated in Figure 2.7. Crossbar switch topology is a low latency and

high throughput network [62]. In crossbar topology, every node is connected to other node with

non-blocking feature. The arrangement of cores in crossbar topology is in rows and columns

20

pattern. The crossbar topology achieves high performance as the switches provide all possible

permutations [63].

Figure 2.7: Crossbar topology

In cross topology, every node can reach other node through the corresponding switch by

following a XY routing algorithm. The number of horizontal and vertical links are interconnected

by a switch and the communication between nodes is through these intersections. In crossbar, to

select a node the topology has unique intersection. There is no alternative path if any node in row

or column fails.

As illustrated in Figure 2.7, the crossbar network uses p*m grid matrix to connect p inputs

to m outputs in a non-blocking manner. The crossbar topology provides higher bandwidth with

reduced hop count. Crossbar supports simultaneous transfers from all memory modules and

possibility of considering alternative switching route. However, the crossbar topologies have

drawbacks such as failure of any cross-point prevents the

21

engaged in every communication. Crossbar topologies are expensive as they require many wires

and lack of scalability, because the crossbar needs N2 switches for N nodes.

2.3.3 Mesh Topology

Mesh topology is simple, and it can reach destination through several paths. Mesh is easy

to layout on-chip with equal length of links. Mesh is a potential network topology for multicore

architectures [64]. In a two-dimensional (2D) mesh network, all cores are connected in a crossbar

connection as illustrated in Figure 2.8. The cores are plotted/organized in rows and columns

method and they are addressed using matrix technique. Mesh network topology is the most

common topology used, due to its advantages of shorter wavelength, low router complexity, and

feasibility.

Figure 2.8: 2D Mesh topology

Wired mesh network provides very good reliability for inter-core communication [65]. In

realistic implementations, 2D meshes with equal number of nodes along each dimension are used

for connecting a set of processing nodes. The mesh topology with XY routing algorithm has several

advantages such as never runs into deadlock or live lock.

23

Figure 2.9: Mesh topology with subnet division

Instead of using the entire network for smaller workloads, the cores are divided into clusters

which gives the scope of assigning multiple tasks that uses a single cluster or multiple clusters

according to the given workload. This virtual clustering allows the network to be active or non-

active cluster according to the given task. This will help in reducing the power consumption as

idle network consumes less power compared to active cluster. The subnet division will make an

individual small network and it could reach the destination faster if the destination is in the same

subnet.

Even though, the cores are clustered into subnets, at some point they need to follow

traditional mesh topology that has multiple path policy to reach the destination. This method

increases latency and power consumption. To address such issues, alternative routing with the

wireless routers is introduced.

24

2.4.2 Wireless Routers into Subnets

To enhance the performance or to reduce latency of traditional mesh clustering, wireless

routers are introduced [68], [69]. These routers avoid traditional routing and follows subnet to

25

The routers in NePA architecture has two bidirectional 64-bit links connecting it with the

neighboring routers and additionally they also have vertical ports. With the help of the links, two

subnets can be formed – an East subnet and a West subnet, separating the whole network into two

sub-networks. The input and output ports of a NePA router is illustrated in Figure 2.11.

Figure 2.11: Port description of NePA router

Whenever a packet is to be transmitted it is injected into the router via internal port (Int)

and accordingly it is directed to destination by directing it towards either East-subnet or West-

subnet. NePA utilizes an adaptive XY routing [71] scheme to route the packet from source to

destination. To balance the link utilization and improve network performance, the router selects an

alternative output port for incoming packets. This process is useful, especially when the output

port is congested. Wireless routers are capable of transferring packets via wired as well as wireless.

Some of the wired routers in WNoC are replaced with wireless routers which have wireless

links to other routers in different subnets, in addition to the original wired links. Figure 2.12

illustrates the traditional WNoC architecture, where the cores are divided into four rectangular

subnets and the wireless routers are placed in the central core of each subnet.

26

27

cores. The whole network is divided into subnets and each node is identified within its subnet using

a local address. The features of addressing a specific core in a network help WNoC provide much

faster routing decisions as well as a scalable hierarchical system.

28

this technique, a subnet can run its own application alone and can serve the requests of other

subnets with a

29

congestion is too high, then the nodes check for an alternative route that has less congestion path.

Each node has horizontal path with 2-bits quantized value and vertical path with 2-bits quantized

value, which totally makes 4-bits load value to find the less congestion path. Horizontal path node

uses 2-bits quantized value that reflects East subnet and West subnet to calculate the less

congestion path. Similarly, vertical path node uses 2-bits quantized value that reflects North subnet

and South subnet to calculate the less congestion path.

To establish a route between source node and destination node, configuration packets are

generated with the collaboration of neighbor nodes. Adaptive algorithms may need more

computation than deterministic algorithms to identify the correct path for sending packets between

nodes [78], [79], [80]. The performance can be improved when the load is uniformly distributed

throughout the network and maintains balanced nature of the architecture.

30

CHAPTER 3

PROPOSED DIRECTORY-BASED WIRED-WIRELESS NETWORK-ON-CHIP

ARCHITECTURES

In this chapter, we introduce our proposed directory-based wired-wireless network-on-chip

architectures. We describe the design considerations and working principle of the directories. We

propose three architectures as listed below:

• Proposed Architecture 1: Introduction of Centralized Directory in WNoC

 Architecture with Uniform Partition of Subnets

• Proposed Architecture 2: Introduction of Distributed Directories in WNoC

 Architecture with Uniform Partition of Subnets

• Proposed Architecture 3: Non-Uniform Partition of Subnets in WNoC Architecture

 with Distributed Directories

The proposed architecture is a hybrid combination of the WNoC architecture and the

DASH architecture. The major goal of the proposed multicore architecture is to reduce the

communication latency among the cores by decreasing the number of hops required to travel from

a source node to a destination node using the directory and wireless routers. The key design

considerations include: grouping cores, designing directory, managing cache consistency, and

communication among cores.

Primarily, in this work, we introduce a single directory that is centralized directory for 4

subnets, where each subnet has 9-core that makes a total of 36-core architecture. Thus, we design

a novel architecture, that is wireless network-on-chip architecture with centralized directory

(WNoC-CD). We model all the architectures using VisualSim tool and derive the performance

31

characteristics such as communication latency, hop count, and power consumption. The proposed

centralized directory is compared with traditional mesh and traditional WNoC architectures [81].

However, centralized directory is not suitable for larger networks. The load on centralized

directory could be heavy with larger networks and thus drawbacks such as delay, data

synchronization, traffic and bandwidth issues may arise. To overcome the issues of centralized

directory, distributed directories are introduced in WNoC, that is WNoC-DDs. The performance

of WNoC-DDs is compared with traditional mesh, traditional WNoC, and WNoC-CD.

As the number of cores increases, the challenges of enhancing performance increase. The

performance of directory introduced to subnets will increase the overall performance. However,

selection of center core that hosts the directory plays a key role in performance improvement and

it could be better if the center core is in equal distance or closer to the other cores in its subnet. For

large core architectures, the size of subnet is large and allocating a full subnet for low loads leads

to underutilization of network and boosts power consumption. So, uniform partition of subnets for

large core may not be satisfactory. Also, uniform subnets may not be suitable for different-sized

applications. Considering the weaknesses of uniform partition, a non-uniform partition approach

is examined.

3.1 Designing Directories for WNoC Architectures

In the design of centralized directory or distributed directories in WNoC architecture, the

basic abstraction is identical. In both centralized and distributed directories, the purpose of the

directories is to hold information about the cached copies. A powerful processor with a wireless

router is used to host the directory. The center core of each subnet is integrated with a wireless

router. The wireless router is capable of transmitting and receiving the data between the subnets.

32

The directory contains the information of all other subnets that includes data sync, minimal routing

path, and it is integrated with wireless router in the central core of each subnet.

WNoC-CD architecture has a single centralized directory and the directory is responsible

for providing information about the cached copies. WNoC-DDs has distributed directories, where

all directories are identical. The directory contains cores’ subnet addresses, the status of each

cached block, and the addresses of the blocks that have been cached. The directory is dynamic in

nature and the total number of directory entries depends on the number of cache blocks/lines per

core. It is explained below with an example:

Say, the cache size per core is 1 KB (1024 Bytes) and the size of each cache block (also

known as, cache line) = 128 Bytes. So, the number of cache blocks = Total size of memory in

cache / Size of each cache line = 1024 Bytes /128 Bytes = 8. Therefore, for an n-core system, n x

(1 + 8) entries are required. In each row, one column for the core number and eight columns for

eight blocks. Table 3.1 illustrates a row in directory that shows the initial stage of Core-1. Initially,

the blocks for each core in the directory will be empty. Whenever a core caches data, the selective

block address of the specific data is recorded to the corresponding block of that core. Table 3.1

illustrates initial stage of Core-

34

directory are made according to the outcomes of the requests for blocks made by the cores. For a

1KB cache with 128B lines:

(1) Initially all the blocks of directories would be empty with Status ‘0’ as shown in Table 3.1

(2) After Core-1 makes a request to fetch 100th block of the next level cache/memory, the block

number is 100 mod 8 = 4. The fetched data is stored in the 4th block of the cache of Core-1 (see

Table 3.2) with Status ‘E’ (for Exclusive).

(3) If the same/cached data is read again by Core-1, then there will be no change in Table 3.2.

(4) If Core-1 performs a write operation on the cached block, then the status of the block will

be changed to ‘M’ to indicate that the value is modified (as illustrated in Table 3.3). A protocol to

manage cache consistency is explained next.

With respect to the read/write requests, the state of a block in the directory changes

accordingly as illustrated in Tables 3.1, 3.2, and 3.3. The directory keeps track of each cached

block and maintains its state. The directories are updated, if there is any request of read or write to

any core and thus it can send the data requested by a core.

Another example: when a core requests for a read operation for the first time, the data of

that selective memory location is read and stored in the appropriate block, the directory is updated

with an ‘E’ (for Exclusive) and the block address. When a core requests a write operation on the

same block, the state of that selective block is changed to ‘M’ (for Modified). For every write

operation, the directory is updated with an ‘I’ (for Invalidate) for the other cached copies. The state

‘S’ (for Shared) of a cached block means more than one cores are sharing that selective block. In

case of multiple directories, u

35

3.3 Proposed Architecture 1: Introduction of Centralized Directory in WNoC

 Architecture with Uniform Partition of Subnets

At the beginning, a

36

From the Figure 3.1, considering a 6x6 mesh topology, the cores are grouped into 3x3-core

subnets, forming four quadrants. Each quadrant, that is each subnet communicates with other

subnets through the centralized directory. Each dark core that is each center core supervises its

own subnet and communicates with other subnets. The subnetting mechanism with the initiation

of centralized directory improves the performance of the system in terms of latency, hop count,

power consumption, and data synchronization.

3.3.2 Communication between Subnets with Centralized Directory

A directory is introduced in the center to hold the information of cached copies of all

subnets. All the cores inside a subnet are local to the subnet and the cores outside of a subnet are

remote cores for that subnet. A source core places its request for the data on the bus and if the data

is no

37

helps WNoC-C

38

Unlike centralized directory, the major advantage of the distributed directories is performing the

data sync by broadcasting the updates to all other directories without any waiting time.

3.4.1 Clustering Cores into Uniform Subnets with an Individual Directory

In this model, cores are divided into uniform subnets, and center core of each subnet is

substituted with a directory and wireless router and is illustrated in Figure 3.2.

Figure3.2: WNoC architecture with distributed directories

Considering a 6x6 mesh topology, the cores are structured into 3x3-core subnets, forming

four quadrants. In every subnet of Figure 3.2, Core-4 (0, 0.x) is a center core that contains a

wireless router and an individual directory. The dotted line represents the wireless connections

with the other subnets’ center core and they are connected to one another.

39

3.4.2 Communication between Subnets with D

40

performs the necessary

41

42

3.5.1 Clustering Cores into Uniform and Non-Uniform Subnets with an Individual

Directory

To illustrate this approach, we consider a 64-core system with four subnets. Each subnet is

segregated with 16-core and so we have four subnets. Figure 3.3 illustrates a 64-core architecture

partitioned into four uniform subnets. The dark colored cores (e.g., core-9, 13, 41, and 45) are

center cores with the directory and wireless router features.

Each subnet is having its own directory. Previously, results of 36-

43

• Selection of Center Core in Even Size Subnet

The size of a subnet is always described in row x column approach. So, m x m subnet size

indicates m number of rows and m number of columns. Finding a center for even subnet size is

always challenging. For example, considering Subnet 0 of Figure 3.3, the possibility of retrieving

exact center core is difficult. Going closer, the opportunity for being center core is of equal priority

to the cores 9, 10, 17, and 18. In this work, we are not considering any additional special cores and

so we can’t make the even subnet size into an odd series. Selection of any above listed cores have

44

Figure 3.4: Non-uniform partition of subnets in 64-core architecture

3.5.2 Communication between Distributed Directories with D

45

between source to destination is not only considered between directories but the complete path of

serving the request.

46
 46

47

parameters such as communication latency, hop count, and power consumption. In these

architectures, we calculate the complete path of requests that involves from source to destination

requests and vice-versa to complete the requests of data. In the workload, source core is the one

who requests the data and the destination core is the one who delivers the data to source core upon

request. Mesh architecture is not considered in the non-uniform study as they are not satisfactory

when compared to directory-based WNoC architectures. This is proven in the proposed 1 and

proposed 2 architectures. So, the performance evaluation is only evaluated for uniform and non-

uniform partition of subnets. As stated, the path considerations are different, they are explained in

detail with the exploration of parameters.

• Communication Latency

Communication latency is a measure of time taken for transmitting a packet from source

core to destination core. Communication latency depends on hop count, type of architecture and

protocols used for transmission of packets. The latency is a major performance parameter, which

is essential to consider in any architecture for real-time or any kind of applications [84], [85], [86].

Wormhole packet switching is considered for data delivery as it has very low transfer latency in

transmitting packets. Say, a packet size of 64-bit flits is considered [87]. Where, the first flit is the

header flit, which has the control information for delivering the packet to the destination address

and followed by the actual payload. Intermediate nodes process just the first flit of the packet to

know whether the packet is intended for itself or any other core. Only the destination core would

process the whole packet. Because of that the delay caused by the intermediate nodes is less

compared to the delay caused by the destination core. In an intermediate core, the delay is caused

due to processing only the first flit (say, 8 Bytes). However, in a destination core, the delay is

49

• Power C

50

length between nodes. The performance of tasks can be observed individually as task wise for

communication latency, hop count, and power consumption. The overall performance such as

average calculation of each parameter gives precise statistics, whether to consider the new

proposed architecture is beneficial compared to the other architectures. To find the decrease or

improved performance of any parameter, the total column of each architecture is summed initially.

The summed column of proposed architecture is subtracted from other architectures individually

and finds the reduced difference.

To find the average in percentage, the ratio of reduced difference when the proposed

architecture is compared with other architectures to other individual architecture summed column,

and then multiplied by 100. Mathematically, it can be represented as follows:

To calculate average of parameters for n (n>1) number of tasks, when compared to mesh

in %=

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑀𝑀𝑃𝑃𝑀𝑀ℎ −   

55

Table 4.2 (continued)
Different
Scenarios Source Core (S) Destination Core (D) Subnet Location

Task 14 Core - > (1, 1.2) Core - > (0, 0.8) Out-Subnet
Task 15 Core - > (1, 0.6) Core - > (0, 1.2) Out-Subnet
Task 16 Core - > (1, 0.4) Core - > (0, 1.7) Out-Subnet
Task 17 Core - > (1, 1.3) Core - > (0, 1.3) Out-Subnet
Task 18 Core - > (0, 1.2) Core - > (1, 1.0) Out-Subnet
Task 19 Core - > (0, 0.1) Core - > (1, 0.7) Out-Subnet
Task 20 Core - > (1, 0.2) Core - > (0, 1.6) Out-Subnet
Task 21 Core - > (0, 0.6) Core - > (0, 0.5) In-Subnet
Task 22 Core - > (1, 0.7) Core - > (1, 0.8) In-Subnet
Task 23 Core - > (0, 1.4) Core - > (0, 1.2) In-Subnet
Task 24 Core - > (1, 1.6) Core - > (1, 1.2) In-Subnet
Task 25 Core - > (0, 1.7) Core - > (0, 1.1) In-Subnet

• Workload for Proposed Architecture 3

Unlike 36-core architecture, a different workload is considered for the 64-core architecture.

This workload allows us to compute the performance in different parameters according to job and

individual task basis. The details of the workload are listed in Table 4.3.

In this workload, tasks are included with in-subnet scenarios and out-subnet scenarios. The

performance evaluation of the architecture is derived on job basis as well as individual task basis.

The jobs are given sequentially and are serviced according to the request order. Here the jobs are

not identical, where they differ in number of tasks and location of subnets that is in or out.

To evaluate the best of the architectures, random tasks are generated where few tasks may

give advantage to uniform subnets and some other to non-uniform subnet partition. Non-uniform

subnet is a trade-off approach for large core architectures like more than 64-core. The method of

proposed architecture 3 can be extended to any large number of cores. The random scenarios are

generated using VisualSim tool for jobs, with an instruction to consider in or out-subnets.

56

Table 4.3: Workload for uniform and non-uniform subnets in 64-core architecture

Different
Scenarios

Subtasks
between
Cores

Uniform Partition Non-Uniform Partition
Subnets
Involved

Subnet
Location

Subnets
Involved

Subnet
Location

Job 1

18-54 S0, S3 Out S0, S3 Out
59-19 S3, S0 Out S2, S0 Out
19-51 S0, S3 Out S0, S2 Out
18-50 S0, S2 Out S0, S2 Out
58-26 S2, S0 Out S2, S0 Out

Job 2

19-20 S0,S1 Out S0 In
60-51 S3,S2 Out S2 In
52-50 S3,S2 Out S2 In
24-20 S0,S1 Out S0 In

Job 3

6-28 S1 In S1, S0 Out
31-20 S1 In S1, S0 Out
63-39 S3 In S3, S1 Out

57

multiple routing in mesh topology, and traffic as well as broadcasting issues of traditional WNoC

can be avoided. Data synchronization is easy with the directories as they are having proven history

58

If the destination is only one hop distance (Tasks such as 9, 18 and 22), then all the

networks behave as mesh and the communication latency is identical in mesh and WNoC-CD, but

traditional WNoC takes additional latency to update the subnets.

Table 4.4: Communication latency compared to WNoC-CD architecture

Different Scenarios Traditional Mesh
(ms)

Traditional
WNoC

(ms)

Proposed WNoC-CD
(ms)

Task 1: (0,0.0)-(1,1.8) 4x9+40=76 4x4+40=56 4x2+40=48
Task 2: (0,0.4)-(1,1.4) 4x5+40=60 4x0+40=40 4x0+40=40
Task 3: (0,0.7)-(1,0.1) 4x4+40=56 4x2+40=48 4x1+40=44
Task 4: (0,0.3)-(0,1.5) 4x4+40=56 4x2+40=48 4x1+40=44
Task 5: (1,0.5)-(0,1.2) 4x4+40=56 4x3+40=52 4x1+40=44
Task 6: (1,0.7)-(0,1.5) 4x3+40=52 4x2+40=48 4x1+40=44
Task 7: (0,1.0)-(1,0.0) 4x5+40=60 4x4+40=56 4x2+40=48
Task 8: (0,0.8)-(1,1.6) 4x3+40=52 4x4+40=56 4x2+40=48
Task 9: (0,0.7)-(0,1.1) 4x0+40=40 4x2+40=48 4x0+40=40
Task 10: (1,1.5)-(1,0.2) 4x3+40=52 4x3+40=52 4x1+40=44
Task 11: (0,1.3)-(0,0.1) 4x4+40=56 4x2+40=48 4x1+40=44
Task 12: (0,1.4)-(1,0.6) 4x3+40=52 4x2+40=48 4x0+40=40
Task 13: (1,0.1)-(1,1.1) 4x2+40=48 4x2+40=48 4x1+40=44
Task 14: (1,1.2)-(0,0.8) 4x3+40=52 4x4+40=56 4x2+40=48
Task 15: (1,0.6)-(0,1.2) 4x1+40=44 4x4+40=56 4x2+40=48
Task 16: (1,0.4)-(0,1.7) 4x6+40=64 4x1+40=44 4x0+40=40
Task 17: (1,1.3)-(0,1.3) 4x2+40=48 4x2+40=48 4x1+40=44
Task 18: (0,1.2)-(1,1.0) 4x0+40=40 4x4+40=56 4x0+40=40
Task 19: (0,0.1)-(1,0.7) 4x4+40=56 4x2+40=48 4x1+40=44
Task 20: (1,0.2)-(0,1.6) 4x9+40=76 4x4+40=56 4x2+40=48
Task 21: (0,0.6)-(0,0.5) 4x2+40=48 4x2+40=48 4x2+40=48
Task 22: (1,0.7)-(1,0.8) 4x0+40=40 4x0+40=40 4x0+40=40
Task 23: (0,1.4)-(0,1.2) 4x1+40=44 4x1+40=44 4x1+40=44
Task 24: (1,1.6)-(1,1.2) 4x3+40=52 4x3+40=52 4x3+40=52
Task 25: (0,1.7)-(0,1.1) 4x1+40=44 4x1+40=44 4x1+40=44

The detailed explanation of Table 4.4 for each architecture can be better known by

discussing with any task. Let’s consider the Task 1, which is the maximum distance between

source and destination

59

if the delay due to an intermediate core is four units, the delay caused due to a destination core is

assumed to be 40 units. The intermediate cores check only the header flit and so each intermediate

core causes four units of delay. In mesh, for Task 1, they are nine intermediate cores and one

destination core excluding source core. So, delay due to nine intermediate cores will be 36

(4*9=36) units and the destination core takes 40 units, which will make the total as 76 units. In

WNoC-CD, the centralized directory is considered as destination core. So, in Task 1, it has two

61

communicate between source and destination core it has 10 intermediate hops. Usually in mesh, it

should get an acknowledgement to send any information. So, it has double path for source and

destination which makes 20 hop counts. Similarly, to acknowledge the information is completely

received from destination to source is also double which makes 20 hop count and so in total it has

40 hop counts. In WNoC-CD, the request to fetch data is up to centralized directory that is three

hops and then the return path is from destination to source core that is six hops, which makes the

total as nine hops. In WNoC-DDs, the request to fetch is to its individual directory only as the

directories are synced that takes two hops, and then the return path is five hops which makes the

total as seven hops.

4.4.3 Power Consumption

To calculate the power (assumptions in Table 4.1)

62

Table 4.6: Power consumption compared to WNoC-CD architecture
Different
Scenarios

Traditional Mesh
 (mW)

Traditional WNoC
 (mW)

Proposed WNoC-CD
 (mW)

Task 1:
(0,0.0)-(1,1.8)

P1=24, P2=24, P3=25,
Ptot=73

Psd=37.6, Pds=24.7
Ptot=62.3

Psdr=6.9, Pcdr=9.3
Ptot=16.2

Task 2:
(0,0.4)-(1,1.4)

P1=24, P2=24, P3=25,
Ptot=73

Psd=37.6, Pds=24.7
Ptot =62.3

Psdr=6.9, Pcdr=9.3
Ptot=16.2

Task 3:
(0,0.7)-(1,0.1)

P1=23, P2=23, P3=25
Ptot=71

Psd=31.6, Pds=12.7
Ptot =44.3

Psdr=9.9, Pcdr=9.3
Ptot=19.2

63

Table 4.6 (continued)

64

In WNoC-CD:

Ptot = Psdr + Pcdr (For Out-Subnet)
Psdr=Pawrsn+(Pcwr*Ncwr)+Pcwl+Pwl = 2.5+(3*2)+3.3+1.1=12.9
Pcdr= Pdr+Pcwl= 6 + 3.3 = 9.3
Ptot=12.9+9.3=22.2
Pds=Pawrsn+(Pcwr*Ncwr)+Pcwl (For In

65

the communication is also subnet to

66

WNoC-DDs perform better as they reduce the intermediate cores in performing data

transfer between source to destination. WNoC-DDs follow the adaptive XY routing algorithm to

transfer data between cores and it is advantageous as it searches for alternative paths if the traffic

is high at the intermediate cores. The worst scenarios of mesh multicasting (such as end-to-end

communication) and one hop away between two subnets scenarios of WNoC can be avoided in

WNoC-DDs architecture. WNoC-DDs should take less time in all those scenarios. The detailed

statistics of the use of the subnets is maintained and monitored by the directory. The destination

cores are considered based on the activities of the subnets. Thus, the directory should help balance

load by selecting the destination cores from different subnets (if possible). However, the routing

path to communicate within the subnet (Tasks 21 to 25) is the same and so the delay is unique for

all the three architectures namely traditional mesh, WNoC-CD, and proposed WNoC-DDs and is

illustrated in Table 4.7.

WNoC-DDs takes less time due to the introduction of distributed directories. The

directories sync the data of their own subnet as well as other subnets through neighbor directories

by using customized MESI protocol. As the directories are synced, they avoid broadcasting issues

as well as bandwidth issues. So, when the source reaches its own subnet directory then it could be

considered as it reached the destination. In WNoC-DDs, the individual directory is considered as

destination. So, in Task 1 (0,0.0)-(1,1.8), it has only one intermediate core that takes four units and

one destination (directory) core that takes 40 units, which will make the total as 44 units whereas

the traditional mesh takes 76 units and WNoC-CD takes 48 units.

4.5.2 Hop Count

Hop count determines the number of hops involved in transferring data between source and

destination. The performance can be higher if the number of hops reduced. In WNoC-DDs, the

67

hops are reduced as they skip the intermediate cores and mostly receives the data through its own

subnet directory with minimal latency compared to WNoC-CD and other architectures. The

number of hops involved for data transmission in each task is considered as hop count. The

calculation of hop count for each task is illustrated in Table 4.8.

Table 4.8: Hop count compared to WNoC-DDs architecture

Different Scenarios Traditional Mesh WNoC-CD Proposed WNoC-DDs

Task 1: (0,0.0)-(1,1.8)

HC= HT *2 (S to
D)+

HT *2 (D to
S)=20+20=40

HC= HT (S to
Directory)+

HT (D to S) =3+6=9

HC= HT (S to
Directory)+

HT (D to S) =2+5=7

Task 2: (0,0.4)-(1,1.4) HC=12+12=24 HC=1+2=3 HC=0+1=1
Task 3: (0,0.7)-(1,0.1) HC=10+10=20 HC=2+4=6 HC=1+3=4
Task 4: (0,0.3)-(0,1.5) HC=10+10=20 HC=2+4=6 HC=1+3=4
Task 5: (1,0.5)-(0,1.2) HC=10+10=20 HC=2+5=7 HC=1+4=5
Task 6: (1,0.7)-(0,1.5) HC=8+8=16 HC=2+4=6 HC=1+3=4
Task 7: (0,1.0)-(1,0.0) HC=12+12=24 HC=3+6=9

68

70

Table 4.9 (continued)

Different Scenarios Traditional Mesh
(mW)

WNoC-CD
(mW)

Proposed
WNoC-DDs

(mW)

Task 21: (0,0.6)-(0,0.5) P1=15, P2=15, P3=25
Ptot=55

Psdr=15.9, Pds=14.8
Ptot=30.7

Ptot= Psdd + Pdsddr
=20.8+17.5

=38.3

Task 22: (1,0.7)-(1,0.8) P1=7, P2=7, P3=25
Ptot=39

Psdr=12.9, Pds=8.5
Ptot=21.4

P

P=20.8+17.5

71

core and thus increases latency. Hence non-uniform subnets are introduced to overcome the

latency issues. The thumb rule in determining the subnet size in non-uniform partition is to select

odd number of cores like 9, 15, and 25. This sort of clustering, benefits to find the approximate

center core and it brings a tradeoff superiority to all the neighbor cores in a subnet. Also, the small

and large subnet division allows us to assign subnets for distinct application loads. As each subnet

is assigned with a directory as well as wireless router like proposed architectures 1 and 2, the

latency and power consumption can be reduced.

To reach an agreement, which partition is better, uniform or non-uniform, one should go

through the examination of performance parameters. In these architectures, different jobs are

considered as loads and the performance is observed as an average of all jobs as well as individual

jobs. The performance parameters examined in these architectures are communication latency, hop

count, and power consumption. In the proposed architecture 3, traditional mesh, traditional WNoC,

and WNoC-CD discussions are avoided as it is significantly proven that distributed directory

architecture performs better than the above-mentioned architectures.

4.6.1 Communication Latency

The communication latency is calculated on job basis and on individual task basis. When

72

The detailed calculations of communication latency can be observed in Table 4.10. There

are 6 jobs in total and individual tasks are 31 in total.

Table 4.10: Communication latency of 64-core architecture with uniform and non-uniform
subnets

Different
Scenarios

Subtasks
between Cores

Uniform Partition
(ms)

Non-Uniform Partition
(ms)

Job 1

18-54 3x4+4x4+4x4+40=84 0+2x4+0x4+40=48
59-19 5x4+5x4+7x4+40=108 3x4+3x4+3x4+40=76
19-51 4x4+5x4+6x4+40=100 2x4+3x4+2x4+40=68
18-50 3x4+4x4+4x4+40=84 0+2x4+2x4+40=56
58-26 4x4+5x4+6x4+40=100 2x4+3x4+2x4+40=68

Job 2

19-20 0+2x4+0x4+40=48 0+2x4+0x4+40=48
60-51 4x4+5x4+6x4+40=100 4x4+2x4+3x4+40=76
52-50 3x4+4x4+4x4+40=84 3x4+0+1x4+40=56
24-20 4x4+4x4+5x4+40=92 4x4+3x4+4x4+40=84

Job 3

6-28 3x4+4x4+4x4+40=84 3x4+5x4+5x4+40=92
31-20 5x4+3x4+3x4+40=84 3x4+4x4+4x4+40=84
63-39 5x4+4x4+2x4+40=80 3x4+5x4+5x4+40=92
59-35 5x4+4x4+2x4+40=80 3x4+5x4+5x4+40=92

Job 4

19-35 4x4+

73

packet. The latency between intermediate cores through a single hop is four units and the

destination core include a latency of 40 units as it must read the full packet. These assumptions are

like previous architectures and the details are well explained in the above sections for 36-core

architectures. An individual core always knows, its one hop distance cores that is East, West,

North, and South cores. For any task, the latency is evaluated by considering the number of cores

involved in the process from source to destination and vice-versa. Generally, the cores involved in

each task is based on the routing strategy and size of subnet where partition plays a vital role. On

average, non-uniform partition has more potential than uniform and the results are quite

satisfactory.

The path calculation for computing latency in mathematical representation is as follows:

Latency= Know the destination (Source to Directory) + Directory request to destination

core (Directory to destination) + Send data from destination to source core directly.

By using the above mathematical expression, the latency for each job is calculated for both

uniform and non-uniform partitions and then finally compared to analyze the performance.

4.6.2 Hop Count

Hop is a link between two cores that is wired, or wireless connected. Cores communicate

each other with these links and the error-free connection ensures trustworthy communication. The

computation of hop count is analyzed for job and individual task basis. The hop count in both

uniform and non-uniform partitions, does not require any return or acknowledgement. This

approach will reduce the number of hops in larger when compared to traditional mesh

architectures. Number of hops required for any job is based on the number of links that are

connected to cores. If a greater number of hops involved for data transmission, then the

comprehensive hop counts of that task will be larger.

74

75

are given highest priority which will resolve the performance of the system. Unlike uniform

partition, non-uniform partition has small and large subnets. Eventually, smaller subnets require

less hops when compared to larger subnets. However, it takes more hops if larger subnet is

considered. As the workload is random, the outcome performance in both partition methods will

determine the best approach of logical splitting of subnets.

Two cores communicate directly only when they are at one hop distance. However, after

data exchange between cores, it is essential to update the directory to get rid of data

synchronization issues. In such cases, mesh topology may be advantage but on average of random

workloads, the directory-based architectures proved their performance is immense. We can also

77

Table 4.12 (continued)

Different
Scenarios

Subtasks
between Cores

Uniform Partition
(mW)

Non-Uniform Partition
(mW)

Job 4

19-35 Psd =33.3, Pds=33.3
Ptot=66.6

Psd =27.3, Pds=9
Ptot=36.3

17-34 Psd =24.3, Pds=24.3
Ptot=48.6

Psd =24.3, Pds=12
Ptot=36.3

38-14 Psd =24.3, Pds=24.3
Ptot=48.6

Psd =24.3, Pds=15
Ptot=39.3

49-52 Psd =24.3, Pds=24.3
Ptot=48.6

Psd =24.3, Pds=15
Ptot

ds

79

For In-subnet:

The data transmission for in-subnet is slightly different from other scenarios. If they are

not at one hop distance, then the request goes to directory, but the return path is not necessarily

through directory as they are in same subnet. The directory informs the destination core to send

the data directly to source if the directory finds the destination is not busy.

Psd = Power from source to directory (Psdr) + Power from directory to destination

Pds = Power from destination to source + Update other directories

According to the experimental results, the power consumption in non-uniform subnets may

be higher for some special tasks (e.g., Job 6 Subtasks between cores 9-45 and 13-41), but on

average, the performance of non-uniform subnets compared to uniform partition of subnets with

large number of cores is impressive.

80

CHAPTER 5

 RESULTS AND DISCUSSION

In this chapter, first we discuss results of the proposed WNoC-CD, and WNoC-DDs

architectures. Then, we discuss the results of the non-uniform partition of subnets with WNoC-

DDs as proposed architecture 3. For proposed architectures 1 and 2, the same workload is used.

We use 25 different communication tasks as workload by considering in-subnet and out-subnet

scenarios. Then the pe]TJ
0 (e)4 (ne)41(s)]TJ
0(e)4 ()]TJ
0arce (ap)d
[(nd)94 (e(e)4 (au)-1160 (e)4 ()-5 (cu)-4 ()-14 ()-5 (ccs]TJ
0.001 Tc7 Tw 3.71 0 Td91(s)-1 (ubne))4 ()-2 (t)-1 (w)2 (or)4 (om)-2 (m)-2 (uni)-2 (c)4 (a)4 (t)-2 (i)-2 (on t)-2 (al]TJ
15.6 (ect)(c)4 (t)nc-1160 c)4 (o, hox)-2 (mu)-10 (,a)4 (r)-7 (c
-0.002 Tc 0h)Tj
15 .62d
[(s)-5 (cpo)-7 (3 (i)-2 (nns)-1 (i)-2 (duni)-2 p)-2 (on t)-2 (a.002 [(a (e)4 (nt)-2 (e)4 (r)3 (i)-2 (n)-10 (v)-10 (a)3 (m)-2 (bo W)-6 (N)2 (oC)]TJ
0 Tw 16.67 0 9.03-)Tj
0.05 Tw -30.003 Tw 0.33 0 Td
(CD)Tj
0 Tc 0 Tw 1.39 0 Td
(,)Tj
()Tj
0.69 0 Tc 0h)Tj
Td
[(uni)-2 -7 (c
-0)2 (oC)]TJ
0 Tw 16.67 04.51-)Tj
-0.002 Tc 0.002 Tw 0.33 0 Td
(DD)Tj
0 Tc 0 Tw (s)Tj
1.82 0 Td
()Tj
-0.004 Tc 0.004 Tw 0.44 0 Td2[(s)-1 (uch)-4 (i)-6 (t)-61 (ect)-6 (u)-14 (r)- (es)]TJ
0 TTJ
0.Tc 0 Tw 5.1 0 Td
35

81

Figure 5.1: Communication latency compared to WNoC-CD architecture

From Figure 5.2, by considering all the

82

5.1.2 Hop Count

The hop counts due to the mesh, WNoC, and proposed WNoC-CD architectures for all 25

tasks are illustrated in Figure 5.3. WNoC-CD reduces extra hops compared to mesh or traditional

broadcasting WNoC as the directory supervises the routers in establishing the path between source

and destination cores. However, WNoC requires few extra hops based on the task to update the

directory for maintaining data sync. This process does not affect the performance compared to

mesh and traditional

83

From Figure 5.4, it can be observed that the hop count due to the WNoC-CD architecture

is reduced by 62.03% when compared with the mesh architecture, and 52.65% when compared to

traditional WNoC architecture.

Figure 5.4: Average hop count compared to WNoC-CD architecture

5.1.3 Power Consumption

Power consumption due to the mesh, traditional WNoC, and proposed WNoC-CD

architectures for all the tasks is illustrated in Figure 5.5. It should be noted that the amount of

power consumption is different in each subnet as broadcasting is involved in traditional WNoC

and the update of data is essential with the centralized directory. Thus, the power consumption

varies for each individual task. The power consumption in mesh architecture is maximum because

the average of the whole network is considered, whereas the traditional WNoC and WNoC-CD

architectures consumes less power due to the introduction of subnets. WNoC-CD architecture

consumes power based on subnet usage and the non-active subnets are idle and the power

consumption of idle subnets is negligible.

424

340

161

0
50

100
150
200
250
300
350
400
450

For all 25 tasks

N
um

be
r

of
 h

op
s

Average Hop Count Compared to WNoC-CD

Mesh Traditional WNo422.>R�Ch

84

From Figure 5.6, it can be observed that the power consumption due to the proposed

WNoC-CD architecture is reduced by 66.96% when compared with that of the mesh architecture,

and 57.3% when compared with traditional WNoC architecture.

Figure 5.5: Power consumption compared to WNoC-CD architecture

Figure 5.6: Average power consumption compared to WNoC-CD architecture

0

20

40

60

80

100

120

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
1

T1
2

T1
3

T1
4

T1
5

T1
6

T1
7

T1
8

T1
9

T2
0

T2
1

T2
2

T2
3

T2
4

T2
5

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Power Consumption Compared to WNoC-CD

Mesh Traditional WNoC WNoC-CD

1617

1251.2

534.2

0

200

400

600

800

1000

1200

1400

1600

1800

For all 25 tasks

Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

Average Power Consumption Compared to WNoC-CD

Mesh Traditional WNoC WNoC-CD

85

5.2 Evaluation of Proposed Architecture 2

In this work, we introduce directory in each subnet and so it is termed as WNoC

architecture with distributed directories (WNoC-

86

Figure 5.7: Communication latency compared to WNoC-DDs architecture

From Figure 5.8, by considering all the tasks, it is observed that the WNoC-DDs

architecture help reduce the communication delay, in an average, by 20.54% compared to mesh

architecture, and 5.40% compared to WNoC-

87

5.2.2 Hop Count

The hop counts due to the mesh, WNoC-CD, and proposed WNoC-DDs architectures for

all 25 tasks are illustrated in Figure 5.9. WNoC-CD needs extra hops (based on task) to update the

centralized directory for maintaining data sync. In WNoC, for Task 14 and Task 15, the hop count

is maximum when compared to other architectures. The directory handles the request of each

source core and ensures data transfer from the destination core to1M8lw-0.004 Tc 0.001.0 Td
[(W)-8 (No)2.97(es)]TJ
0 Tc 0 Tw2.84 0 Td
(-)Tj
-0.004 Tc 0.002 Tw 7.58 0 Td
[(W)-8 (No)-2 (C)]TJ
0 Tc 0 Tw 2.84 0 Td
(-)Tj
-0.002 Tc 0002 Tw 0.33 0 (.002 Td
(DDs)Tj
0 Tc 0 Tw5(ach)-9)]TJ
-0.016 t dih0.61 0o upd diru(s)-1 (t)-2 (he b)-3 (Da (nd p5, t)-2 (ha()-10 (r)3 he)4 (hop (ndl)-2 (e)4 aupd) (di-2 (he (o)-1p)4 (nt)-2 (r2 (he)44 (l)-24 (s)-11 (e)-6 (d (nt)-2 W)-6 (N)2 (o)-10 (r)t4 (nt)-2 (rba)4 (s)-o5 (s)-1 ()-144 (l)(N)2 ()-6 (dub3 0 Td3 he)4 (hop W)-6 (N)2 ((o)-10 (r)3 ()-10 (m)-2 (a)4 (i)-2 (nt)-2 (a)4 ((ndl)-2 (e)4 d)4 (nd 0 (m)-2 (a) (r)-5 (c)6 (h)2 (ite)]TT*214 Tw)-6 y)1)-4 (es)-co)2 (th)m-4 (co)-4 n.004 Tg)3 Tw .28 0 Td
[(c 0.001cw 2.81 0 Td
[(o)7.32.004 Tc 0(N)2 0 Td
[()-10 (r)/ he)4 (hopub3 0 Td3 he)4 (hop.0 Td

0 Tc 0 Tw 1.94 0 Td
(2)Tj
EMC 31-0.0da)op 3

89

For Tasks 21, 22, 23, 24, and 25 the power consumption is slightly large compared to

WNoC-CD, but it is suitable for large network with reduced traffic. However, the proposed

architecture power consumption is less for any individual task when compared to mesh

architecture.

From Figure 5.12, it can be observed that the power consumption due to the proposed

architecture is reduced by 73.56% when compared with that of the mesh architecture, and 19.97%

when compared with that of the WNoC-CD architecture. This is because the proposed distributed

90

performance of the architecture. In this section, we compare the performance parameters such as

latency, hop count, and power consumption in both uniform and no-uniform partition of subnets.

5.3.1 Communication Latency

In this work, we considered 6 jobs where each job has individual subtasks. The

91

the non-uniform partitions, where small to large subnets existence can improve performance for

many jobs on random. On average, non-uniform subnets perform well when compared to uniform.

Figure. 5.14 illustrates the average performance according to the job. From the Figure 5.14,

it can be observed that non-uniform partition of subnets performs better in 4 jobs out of 6 jobs. Job

6 performance is identical as the jobs are from directory to directory. These random workloads

generated by VisualSim tool provides substantial information that non-uniform partition of subnets

perform well.

Figure 5.14: Average communication latency on job basis

From Figure 5.15, by considering all the tasks, it is observed that the non-uniform subnets

64-core architecture help reduce the communication delay, in an average, by 11.11% compared to

uniform subnet architecture.

476

324 328

588

432

264

316

264

360

544

396

264

0

100

200

300

400

500

600

700

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

C
om

m
un

ic
at

io
n

L
at

en
cy

 (m
s)

Average Communication Latency on Job Basis

Uniform Subnets Non-Uniform Subnets

93

Figure

94

architecture. This is because the non-uniform subnets have close center core with distinct size of

subnets in its architecture.

Figure 5.18: Average hop count of 64-core architecture

5.3.3 Power Consumption

Power consumption due to the uniform and non-uniform subnets 64-core architectures for

all jobs is illustrated in Figure 5.19. The power consumption is different from one other even

though both are WNoC-DDs architecture as they differ in logical partition. The change in subnet

size varies the position of center core and neighbor cores. Thus, the routing path for jobs through

individual tasks differ. The performance of the architecture will be considered best if the power

consumption is reduced. The selection of any architecture mostly relies on latency and power

consumption. The results of the architectures shown that non-uniform subnets perform well when

compared to traditional uniform subnets.

278

205

0

50

100

150

200

250

300

Job 1 - Job 6, T1-31

N
um

be
r

of
 h

op
s

Average Hop Count of Uniform and Non-Uniform Subnets Partition

Uniform Subnets Non-Uniform Subnets

95

Few in-subnet jobs may take more power as they traditionally follow mesh and updating

the directories. However, as the subnet size varies, eventually power consumption in both

architectures also varies.

Figure 5.19: Power consumption of uniform and non-uniform subnets in 64-core architecture

Power consumption calculation is determined by the number of cores, wired-wireless

routers, and directories involved in transferring the data between source and destination core. For

every job, the above listed resources are considered and is illustrated in Figure 5.20. To make the

96

positions. The dissimilar sizes of subnet prove that the performance is improved, and they are

potential when considering other performance parameters too.

Figure 5.20: Average power consumption on job basis

Figure 5.21: Average power consumption of 64-core architecture

315

218.1
193.2

363.3

242.1

170.4
152.4

136.2

236.4

333

209.4

170.4

0

50

97

CHAPTER 6

CONCLUSIONS AND FUTURE EXTENSIONS

In this research, we analyzed different architectures such as mesh, WNoC, WNoC-CD,

WNoC-DD of 36-core capacity. Further, the research is extended to 64-core architecture. WNoC-

DDs proved they are best when compared to other architectures. WNoC-CD architecture is not

considered for 64-core as there are lot of bottlenecks such as traffic and subnet utilization to ensure

performance. A single directory is not good enough to handle 64-core and so its workload.

6.1 Conclusions

Multicore architectures help improve performance to power ratio by concurrently using

multiple cores. Contemporary multicore architectures have multilevel cache memory organization.

Due to the presence of caches, multicore architectures suffer from high core-to-core

communication latency and power consumption. Studies suggest that directory-based architecture

98

compared to the traditional WNoC architecture. The performance improvement in WNoC-CD

architecture is by reducing the total number of hops.

However, they are several challenges with WNoC-CD architecture such as latency due to

waiting time of tasks and for every out-subnet task the subnet must request the centralized

directory. WNoC-CD architectures are not suitable for larger number of cores. To address the

issues of WNoC-CD, we introduce a uniform subnet partition of WNoC architecture with

distributed directories (WNoC-DDs) as proposed architecture 2. A directory allows the tasks to

execute faster by providing adaptive minimal routing path to reach the destination node. VisualSim

Architect is used to model and simulate the architectures by using synthetic workload and the

workload is identical to proposed WNoC-CD. It is observed that the distributed directories

significantly improve the performance of WNoC architecture, which supports the adaptability of

WNoC-DDs to larger networks. With the proposed WNoC-DDs, individual subnets can operate

simultaneously if/as the cores acquire the required data from its own subnet. As the individual

directory maintains/tracks the status of other directories, it would take less time for processing

without or any further queries for the required data. Experimental results show that the proposed

WNoC-DDs reduces communication delay up to 20.54% and 5.40%, respectively, when compared

to mesh and WNoC-CD. Similarly, the proposed WNoC-DDs reduces power consumption up to

73.56% and 19.97%, respectively, when compared to mesh and WNoC-CD. Finally, each of the

distributed directories can control substantial number of cores compared to centralized directory.

With the increased number of cores, the performance may be improved but the

complexities in coordinating with peer cores is always challenging. A 64-core architecture is

considered with a different workload that has six jobs, which is divided into 31 subtasks. In WNoC

architectures, the performance is mostly based on partition of subnets and the routing algorithms

99

followed. Uniform partition with increased number of cores leads to underutilization of cores,

latency and power consumption due to the shift of center core. To address the issues of uniform

partition, we introduce a non-uniform partition in WNoC-DDs as proposed architecture 3 to get

advantage of getting closer center core in larger number of cores. The non-uniform partition is also

satisfactory to assign subnets according to the workload such as number of cores required to

complete the given job. The proposed technique can be applied to further large number of cores.

The designs and models are simulated using VisualSim tool. The tool allows to analyze the

parameters and conveys useful information and provides trade-off performance of architectures.

According to the experimental results, non-uniform WNoC-DD architectures helps in reducing the

communication delay by up to 11.11%, hop count is reduced up to 26.26%, and the total power

consumption by up to 14.76% when compared with the uniform subnets partition architecture.

This is due to the selection of closer center cores and serving the subnets according to the range of

cores required by a job. Thus, the introduction of non-uniform subnets is appropriate to address

the issues of uniform subnets. Non-uniform subnets are with different subnet sizes and thus they

give the opportunity of assigning workloads based on the subnet size. In such a way, the utilization

is extended and reducing the latency, hop count, and power consumption.

6.2 Future Extensions

This work can be extended for future multicore/many-core system analysis. Some possible

extensions are listed below:

• Designing, modeling, and simulating CPU-GPU architectures for big data analytics.

• Adding traffic parameters to the simulation of proposed architectures to check the range of

workload that is enforced on a single hop and calculate bandwidth utilization and the range

for each workload.

100

• Simulating multicore/many-core architectures to allow non-uniform subnets with dynamic

working strategy to study performance.

• Study on 3D NoC architectures and investigate the impact of combining 3D routers with

3D processor architectures.

101

REFERENCES

102

[1] Meindl, James D, “Beyond Moore's law: The interconnect era,” Computing in Science &
Engineering, Vol. 5, No. 1, pp. 20-24, 2003.

[2] Yeric, Greg, “Moore's Law at 50: Are we planning for retirement?,” In Electron Devices
Meeting (IEDM), 2015 IEEE International, IEEE, 2015.

[3] Bambagini, Mario, Marko Bertogna, and Giorgio Buttazzo, “On the effectiveness of
energy-aware real-time scheduling algorithms on single-core platforms,” In Emerging
Technology and Factory Automation (ETFA), 2014 IEEE, pp. 1-8, IEEE, 2014.

[4]

104

[23] Schley, Gert, and Martin Radetzki, “Optimal distribution of privileged nodes in networks-
on-chip,” In Intelligent Solutions in Embedded Systems (WISES), 2011 Proceedings of the
Ninth Workshop on, pp. 87-92, IEEE, 2011.

[24] Domke, Jens, Torsten Hoefler, and Satoshi Matsuoka, “Routing on the dependency graph:
A new approach to deadlock-free high-performance routing,” In Proceedings of the 25th
ACM International Symposium on High-Performance Parallel and Distributed
Computing, pp. 3-14, ACM, 2016.

[25] Wettin, Paul, Ryan Kim, Jacob Murray, Xinmin Yu, Partha P. Pande, Amlan Ganguly, and
Deukhyoun Heoamlan, “Design space exploration for wireless NoCs incorporating
irregular network routing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 33, No. 11, pp. 1732-1745, 2014.

[26] Shamim, Md Shahriar, Naseef Mansoor, Rounak Singh Narde, Vignesh Kothandapani,
Amlan Ganguly, and Jayanti Venkataraman, “A wireless interconnection framework for
seamless inter and intra-chip communication in multichip systems,” IEEE Transactions on
Computers, Vol. 66, No. 3, pp. 389-402, 2017.

[27] Yu, Zhiyi, “Towards High-Performance and Energy-Efficient Multi-core Processors,” In
CMOS Processors and Memories, pp. 29-51, Springer, Dordrecht, 2010.

[28] Pase, Douglas M., and Matthew A. Eckl, “A comparison of single-core and dual-core
Opteron processor performance for HPC,” IBM xSeries Performance Development and
Analysis, 2005.

[29] H. V. Caprita, and M. Popa, “Design methods of multithreaded architectures for multicore
microcontrollers,” in IEEE International Symposium on Applied Computational
Intelligence and Informatics (SACI), pp. 427-432, 2011.

[30] J. M. Li, P. Jiao, and C. G. Men, “The Heterogeneous architecture of Multicore research
and design,” in International Conference on Management and Service Science, pp. 1-6,
2009.

[31] William Stallings, “Computer Organization and Architecture Designing for Performance,”
8th edition, Prentice Hall, Pearson Publisher, 2010.

[32]

105

[35] M. J. Saikia and R. Kanhirodan, “High performance single and multi-GPU acceleration for
Diffuse Optical Tomography,” in 2014 International Conference on Contemporary
Computing and Informatics (IC3I), pp. 1320-1323, 2014.

[36] Jadon, Shruti, and Rama Shankar Yadav, “Multicore processor: Internal structure,
architecture, issues, challenges, scheduling strategies and performance,” In Industrial and
Information Systems (ICIIS), 2016 11th International Conference on, pp. 381-386, IEEE,
2016.

[37] Ahmed, Rana E., and Muhammad K. Dhodhi, “Directory-based cache coherence protocol
for power-aware chip-multiprocessors,” In Electrical and Computer Engineering
(CCECE), 2011 24th Canadian Conference on, pp. 001036-001039, IEEE, 2011.

[38] Lilja, David J, “Cache coherence in large-scale shared-memory multiprocessors: issues and
comparisons,” ACM Computing Surveys (CSUR), Vol. 25, No. 3, pp. 303-338, 1993.

[39] Gilabert, F., Daniele Ludovici, Simone Medardoni, Davide Bertozzi, Luca Benini, and
Georgi Nedeltc

106

[46] Scott Mueller, and Mark Edward Soper, “Microprocessor Types and Specifications,” June
8, 2001, http://www.informit.com/articles/article.aspx?p=130978&seqNum=4.

[47] Mori, Yosuke, and Kenji Kise, “The cache-core architecture to enhance the memory
performance on multi-core processors,” In Parallel and Distributed Computing,
Applications and Technologies, 2009 International Conference on, pp. 445-450, IEEE,
2009.

[48] Asaduzzaman, Abu, Mark P. Allen, and Tania Jareen, “An effective locking-free caching
technique for power-aware multicore computing systems,” In Informatics, Electronics &
Vision (ICIEV), 2014 International Conference on, pp. 1-6, IEEE, 2014.

[49] Al-Waisi, Zainab, and Michael Opoku Agyeman, “An overview of on-chip cache
coherence protocols,” In Intelligent Systems Conference (IntelliSys), pp. 304-309, IEEE,
2017.

[50] Daya, Bhavya K., Chia-Hsin Owen Chen, Suvinay Subramanian, Woo-Cheol Kwon,
Sunghyun Park, Tushar Krishna, Jim Holt, Anantha P. Chandrakasan, and Li-Shiuan Peh,
“SCORPIO: a 36-core research chip demonstrating snoopy coherence on a scalable mesh
NoC with in-network ordering,” In Computer Architecture (ISCA), 2014 ACM/IEEE 41st
International Symposium on, pp. 25-36, IEEE, 2014.

[51] Cantin, Jason F., Mikko H. Lipasti, and James E. Smith, “Improving multiprocessor
performance with coarse-grain coherence tracking,” In ACM SIGARCH Computer
Architecture News, Vol. 33, No. 2, pp. 246-257, IEEE, 2005.

[52] Patel, Avadh, and Kanad Ghose, “Energy-efficient mesi cache coherence with pro-active
snoop filtering for multicore microprocessors,” In Proceedings of the 2008 international
symposium on Low Power Electronics & Design, pp. 247-252, ACM, 2008.

[53] Giri, Davide, Paolo Mantovani, and Luca P. Carloni, “NoC-Based Support of
Heterogeneous Cache-Coherence Models for Accelerators,” In 2018 Twelfth IEEE/ACM
International Symposium on Networks-on-Chip (NOCS), pp. 1-8, IEEE, 2018.

[54] Ahmed, Rana E., and Muhammad K. Dhodhi, “Directory-based cache coherence protocol
for power-aware chip-multiprocessors,” In Electrical and Computer Engineering
(CCECE), 2011 24th Canadian Conference on, pp. 001036-001039, IEEE, 2011.

[55] Asaduzzaman, Abu, and Kishore K. Chidella, “A novel directory based hybrid cache
coherence protocol for shared memory multiprocessors,” In Phased Array Systems and
Technology (PAST), 2016 IEEE International Symposium on, pp. 1-6, IEEE, 2016.

[56] Nawinne, Isuru, Haris Javaid, Roshan Ragel, Swarnalatha Radhakrishnan, and Sri
Parameswaran, “Exploring Multilevel Cache Hierarchies in Application Specific
MPSoCs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 34, No. 12, pp. 1991-2003, 2015.

107

[57] Huang, Xiaoping, Xiaoya Fan, Shengbing Zhang, and Yuhui Chen, “DLWAP-buffer: A
Novel HW/SW Architecture to Alleviate the Cache Coherence on Streaming-like Data in
CMP,” In Embedded Multicore Socs (MCSoC), 2012 IEEE 6th International Symposium
on, pp. 23-28, IEEE, 2012.

[58] H. Xiao, T. Isshiki, H. Kunieda, Y. Nakase, et al., “Hybrid shared-memory and message-
passing multiprocessor system-on-chip for UWB MAC,” in 2012 IEEE International
Conference on Consumer Electronics (ICCE), pp. 658-659, 2012.

[59] Shreedhar, Tanya, and Sujay Deb, “Hierarchical Cluster based NoC design using Wireless
Interconnects for Coherence Support,” In VLSI Design and 2016 15th International
Conference on Embedded Systems (VLSID), 2016 29th International Conference on, pp.
63-68, IEEE, 2016.

[60] Cerutti, Isabella, Aman Mohammed Behredin, Nicola Andriolli, Odile Liboiron
Ladouceur, and Piero Castoldi, “Ring versus bus topology: A network performance
comparison of photonic integrated NoC,” In Transparent Optical Networks (ICTON), 2016
18th International Conference on, pp. 1-4, IEEE, 2016.

[61] Pandey, Sujan, Manfred Glesner, and M. Muhlhauser, “On-chip communication topology
syntile Liboi-m416.

108

[68] Kumar, T. Ananth, and R. S. Rajesh, “Towards power efficient wireless NoC router for
SOC,” In Communication and Network Technologies (ICCNT), 2014 International
Conference on, pp. 254-259, IEEE, 2014.

[69] Liu, Chung-Hsin, and Chien-Yun Lo, “The study of WSN routing,” In Proceedings of the
2nd International Conference on Interaction Sciences: Information Technology, Culture
and Human, pp. 422-428, ACM, 2009.

[70] Wang, Chifeng, Wen-Hsiang Hu, and Nader Bagherzadeh, “A wireless network-on-chip
design for multicore platforms,” In Parallel, Distributed and Network-Based Processing
(PDP), 2011 19th Euromicro International Conference on, pp. 409-416, IEEE, 2011.

[71] Zhang, Wang, Ligang Hou, Jinhui Wang, Shuqin Geng, and Wuchen Wu, “Comparison
research between xy and odd-even routing algorithm of a 2-dimension 3x3 mesh topology
network-on-chip,” In Intelligent Systems, 2009. GCIS'09. WRI Global Congress on, Vol.
3, pp. 329-333, IEEE, 2009.

[72] Kim, Ryan, Jacob Murray, Paul Wettin, Partha Pratim Pande, and Behrooz Shirazi, “An
energy-efficient millimeter-wave wireless NoC with congestion-aware routing and
DVFS,” In Networks-on-Chip (NoCS), 2014 Eighth IEEE/ACM International Symposium
on, pp. 192-193, IEEE, 2014.

[73] Abadal, Sergi, Albert Mestres, Mario Nemirovsky, Heekwan Lee, Antonio González,
Eduard Alarcón, and Albert Cabellos-Aparicio, “Scalability of broadcast performance in
wireless network-on-chip,” IEEE Transactions on Parallel and Distributed Systems, Vol.
27, No. 12, pp. 3631-3645, 2016.

[74] Han, Xing, Yuzhuo Fu, Jiang Jiang, and Chang Wang, “A Subnetting Mechanism with
Low Cost Deadlock-Free Design for Irregular Topologies in NoC-based Manycore
Processors,” In Information Science and Control Engineering (ICISCE), 2016 3rd
International Conference on, pp. 110-114, IEEE, 2016.

[75] Wang, Xiaohang, Mei Yang, Yingtao Jiang, and Peng Liu, “On an efficient NoC
multicasting scheme in support of multiple applications running on irregular sub-
networks,” Microprocessors and Microsystems, Vol. 35, No. 2, pp. 119-129, 2011.

[76] Reza, Akram, Midia Reshadi, Ahmad Khademzadeh, and Maryam Bahmani, “Norma: A

109

[79] Ezz-Eldin, Rabab, Magdy Ali El-Moursy, and Hesham FA Hamed, “Network on Chip
Aspects,” In Analysis and Design of Networks-on-Chip Under High Process Variation, pp.
11-44, Springer, Cham, 2015.

[80] Morales, Luis Germán García, José Edinson Aedo Cobo, and Nader Bagherzadeh,
“Simulation-Based Evaluation Strategy for Task Mapping Approaches in WNoC
Platforms,” In Parallel, Distributed and Network-based Processing (PDP), 2018 26th
Euromicro International Conference on, pp. 622-626, IEEE, 2018.

[81] Asaduzzaman, Abu, Kishore K. Chidella, and Divya Vardha, “An energy-efficient
directory based multicore architecture with wireless routers to minimize the
communication latency,” IEEE Transactions on Parallel and Distributed Systems, Vol. 28,
No. 2, pp. 374-385, 2017.

[82] Chidella, Kishore K., and Abu Asaduzzaman, “A novel Wireless Network-on-Chip
architecture with distributed directories for faster execution and minimal energy,”
Computers & Electrical Engineering, Vol. 65, pp. 18-31, 2018.

[83] Neishaburi, Mohammad Hossein, and Zeljko Zilic, “NISHA: A fault-tolerant NoC router
enabling deadlock-free Interconnection of Subnets in Hierarchical Architectures,” Journal
of Systems Architecture, Vol. 59, No. 7, pp. 551-569, 2013.

[84] Chu, Slo-Li, Sheng-Jie Shu, Ching-Chung Chen, and Ching-Jung Chen, “Camellia: A
Novel High Performance On-Chip Network for Multicore Architectures,” In Semantics,
Knowledge and Grids (SKG), 2015 11th International Conference on, pp. 186-191, IEEE,
2015.

110

[90] Gharavi, Hamid, and Chong Xu, “Distributed application of the traffic scheduling
technique for smart grid advanced metering applications using multi-gate mesh networks,”
In Global Telecommunications Conference (GLOBECOM 2011), pp. 1-6, IEEE, 2011.

[91] Lankes, Andreas, Thomas Wild, and Andreas Herkersdorf, “Hierarchical NoCs for
optimized access to shared memory and IO resources,” In Digital System Design,
Architectures, Methods and Tools, 2009. DSD'09. 12th Euromicro Conference on, pp. 255-
262, IEEE, 2009.

[92] DiTomaso, Dominic, Avinash Kodi, Savas Kaya, and David Matolak, “iWISE: Inter-router
wireless scalable express channels for network-on-chips (NoCs) architecture,” In High
Performance Interconnects (HOTI), 2011 IEEE 19th Annual Symposium on, pp. 11-18,
IEEE, 2011.

[93] VisualSim Architect. Mirabilis Design. http://mirabilisdesign.com/new/visualsim/; 2016
[accessed on 6/20/17].

[94] Muhammad, Huda S., and Assim Sagahyroon, “Virtual prototyping and performance
analysis of two memory architectures,” EURASIP Journal on Embedded Systems 2009,
No. 1, 2009.

[95] Asaduzzaman, Abu, Md Moniruzzaman, Kishore K. Chidella, and Perlekar Tamtam, “An
efficient simulation method using VisualSim to assess autonomous power systems,” In
SoutheastCon, 2016, pp. 1-7, IEEE, 2016.

[96] Fang J, Lu J, She C, “Research on topology and policy for low power consumption of
network-on-chip with multicore processors,” In Computational Science and
Computational Intelligence (CSCI). IEEE. 2015 International Conference, pp. 621-625,
2015.

[97] Biagetti G, Crippa P, Curzi A, Orcioni S, Turchetti C, “ToLHnet: A low-complexity
protocol for mixed wired and wireless low-rate control networks,” In Education and
Research Conference (EDERC). IEEE. 2014 6th European Embedded Design, pp. 177-
181, 2014.

[98] Mondal HK, Deb S, “An energy efficient wireless Network-on-Chip using power-

111

[101] Chawade SD, Gaikwad MA, Patrikar RM, “Review of XY routing algorithm for network-
on-chip architecture,” International Journal of Computer Applications, Vol. 43, No. 21,
2012.

[102] Wang, Xiaofang, “A novel on-chip interconnection topology for mesh-connected
processor arrays,” In VLSI (ISVLSI), 2010 IEEE Computer Society Annual Symposium on,
pp. 450-451, IEEE, 2010.

	1.1.1 Single-Core Architectures
	1.1.2 Multicore Architectures
	2.1 Cache Memory Hierarchy
	2.1.1 Cache in Single-Core Architectures
	2.1.2 Cache in Multicore Architectures
	2.1.3 Cache Coherence Protocols in Multicore Architectures
	2.2 Directory-Based DASH Architecture
	2.3 Interconnection Network Topologies
	2.3.1 Bus Topology
	2.3.2 Crossbar Topology
	2.3.3 Mesh Topology
	2.4 Wired-Wireless Network-on-Chip Topology
	2.4.1 Clustering Cores into Subnets
	2.4.2 Wireless Routers into Subnets
	2.4.3 Uniform and Non-Uniform Partition of Subnets
	2.4.4 Adaptive XY Routing Algorithm for Wireless Network-on-Chip Architecture
	3.3.1 Clustering Cores into Uniform Subnets of WNoC Architecture
	3.3.2 Communication between Subnets with Centralized Directory
	3.4.1 Clustering Cores into Uniform Subnets with an Individual Directory
	3.4.2 Communication between Subnets with Distributed Directories
	3.5.1 Clustering Cores into Uniform and Non-Uniform Subnets with an Individual Directory
	 Selection of Center Core in Even Size Subnet
	 Partitioning Cores into Non-Uniform Subnets
	3.5.2 Communication between Distributed Directories with Different Assignments
	 Workload for Proposed Architectures 1 and 2
	 Workload for Proposed Architecture 3
	4.4.1 Communication Latency
	4.4.2 Hop Count
	4.4.3 Power Consumption
	4.5.1 Communication Latency
	4.5.2 Hop Count
	4.5.3 Power Consumption
	4.6.1 Communication Latency
	4.6.2 Hop Count
	4.6.3 Power Consumption
	5.1.1 Communication Latency
	5.1.2 Hop Count
	5.1.3 Power Consumption
	5.2.1 Communication Latency
	5.2.2 Hop Count
	5.2.3 Power Consumption
	5.3.1 Communication Latency
	5.3.2 Hop Count
	5.3.3 Power Consumption

